
synergy.cs.vt.edu

CoreTSAR: Adaptive Worksharing
for Heterogeneous Systems

Tom Scogland, Wu-chun Feng
Dept. of Computer Science, Virginia Tech

Barry Rountree, Bronis R. de Supinski
Lawrence Livermore National Laboratory

Edited and presented by Harsh Khetawat

synergy.cs.vt.edu

Heterogeneity in HPC: Accelerators on the Top500

2

0.000%

10.000%

20.000%

30.000%

40.000%

Jan-07 Jan-08 Jan-09 Jan-10 Jan-11 Jan-12 Jan-13

System share

• Heterogeneity becoming the norm in HPC
• Top 10 HPC systems dominated by accelerated systems

How do we target them?

synergy.cs.vt.edu

General Matrix Multiplication(GEMM): CPU serial

void runGemm(T*a, T *b, T *c) {
for (int i =0; i < N; i++) {
for (int j =0; j < N; ++j) {
c[(i *N) +j] *=B;
for (intk =0; k < N; ++k) {
c[(i*N) +j] +=A *a[(i*N) + k] * b[(k*N) + j];

}
}

}
}

Targets: One CPU core

synergy.cs.vt.edu

Threading Behavior

Original/Master thread Worker threads Parallel region

main(…)

4

return 0;

synergy.cs.vt.edu

GEMM: OpenMP

void runGemm(T*a, T *b, T *c) {
#pragma ompparallel for
for (int i =0; i < N; i++) {
for (int j =0; j < N; ++j) {
c[(i *N) +j] *=B;
for (intk =0; k < N; ++k) {
c[(i*N) +j] +=A *a[(i*N) + k] * b[(k*N) + j];

}
}

}
}

Targets: All local CPU cores

synergy.cs.vt.edu

OpenMP Basic Behavior

Original/Master thread Worker threads Parallel region

return 0;

Implicit barrier

6

#pragma omp parallel …

synergy.cs.vt.edu

GEMM: CUDA (minimal)
__global__ void cudag(T *a, T *b, T *c, T A, T B, int n) {
uint i=blockIdx.x *blockDim.x +threadIdx.x;
if(i <n) {
for(int j =0; j <n; ++j) {
c[(i*N) +j] *=B;
for(int k =0; k <n; ++k) {
c[(i*N)+j] +=A *a[(i*N)+k] *b[(k*N)+j];

} } } }
voidrunGemm(T **a, T **b, T **c) {
T *ca, *cb, *cc; dim3 dB, dG;
size_t size =N*N*sizeof(T);
dB.x=64; dB.y=dB.z=1;
dG.x=(N/dB.x)+1; dG.y=dG.z=1;
cudaMalloc(&ca, size);
cudaMalloc(&cb, size);
cudaMalloc(&cc, size);
cudaMemcpy(ca,*a,size,cudaMemcpyHostToDevice);
cudaMemcpy(cb,*b,size,cudaMemcpyHostToDevice);
cudaMemcpy(cc,*c,size,cudaMemcpyHostToDevice);
cudag<<<dG,dB>>>(a, b, c, A, B, N);
cudaMemcpy(*c,cc,size,cudaMemcpyDeviceToHost);

}

Targets: One GPU

synergy.cs.vt.edu

CUDA Threading Behavior

Original/Master thread Worker threads Parallel region Accelerated region
8

cudag<<<dG,dB>>>(a, b, c, A, B, N);

synergy.cs.vt.edu

GEMM: Accelerated OpenMP (OpenMP 4.0 syntax)

void runGemm(T*a, T *b, T *c) {
#pragma omptarget teams distributeparallel for \

map(tofrom: c[0:N][0:N]) \
map(to: a[0:N][0:N], b[0:N][0:N])

for (int i =0; i < N; i++) {
for (int j =0; j < N; ++j) {
c[(i*N) +j] *=B;
for (intk =0; k < N; ++k) {
c[(i*N) +j] +=A *a[(i*N) + k] * b[(k*N) + j];

}
}

}
}

Targets: One accelerator or
one CPU core

synergy.cs.vt.edu

Accelerated OpenMP Threading Behavior

Original/Master thread Worker threads Parallel region Accelerated region
10

#pragma acc kernels for…

synergy.cs.vt.edu

Accelerated OpenMP + OpenMP Threading Behavior

Original/Master thread Worker threads Parallel region Accelerated region

#pragma omp parallel …

Kernels

11

#pragma acc kernels for…

synergy.cs.vt.edu

The Goal:
Work-share a Target Region Across the Whole System

Original/Master thread Worker threads Parallel region Accelerated region

#pragma acc kernels for…

#pragma omp parallel …

OR

12

synergy.cs.vt.edu

Issues

• Computational Overhead
– Launching tasks onto GPUs is expensive (compared to CPUs)

• Heterogeneity of Computational Devices
– Mapping the right amount of work to the right core

• Memory Incoherence
– CPUs and GPUs generally do not share memory

13

synergy.cs.vt.edu

Solutions

• Adaptive scheduling to minimize launch overhead (Splitter)

• Performance-prediction for load-balancing (CoreTSAR)

• Multi-device memory management (CoreTSAR)

14

synergy.cs.vt.edu

Background:
GEMM: Our Previous Approach, Splitter

voidrunGemm(T *a, T *b, T *c) {
splitter *s =split_init(N, SPLIT_DYNAMIC, NULL, NULL);
for(int d_it =0; d_it<s->d_end; d_it++) {
s =split_next(no, d_it);

#pragma omp parallel num_threads(2)
{
int tid =omp_get_thread_num();
if(tid ==0) split_gpu_start(s); else split_cpu_start(s);
int start =tid ==0?s->gts :s->cts;
int end =tid ==0?s->gts :s->cts;

#pragma omp target teams distribute parallel for \
map(tofrom: c[start:end][start:end]) \
map(to: a[start:end][start:end])\
map(to: b[start:end][start:end])
for(int i =start; i <end; i++) {
for(int j =0; j <N; ++j) {
c[(i*N) +j] *=B;
for(int k =0; k <N; ++k) {
c[(i*N) +j] +=A *a[(i*N) +k] *b[(k*N) +j];

} } }
if(tid ==0) split_gpu_end(s); else split_cpu_end(s);

} } }

Targets: One local accelerator
and all CPU cores

synergy.cs.vt.edu

Background:
Splitter Threading Behavior

Original/Master thread Worker threads Parallel region Accelerated region

#pragma acc kernels for…

#pragma omp parallel …

16

synergy.cs.vt.edu

Background: Splitter’s Main Contribution:
Adaptive Static Scheduling Policies

• Minimize blocking time
– No device should stand idle waiting for others

• Avoid overhead of running more tasks than necessary
– Launching a task on a GPU, and moving memory, is expensive

synergy.cs.vt.edu

Background:
Scheduling Policies: Static

• Divide work based on a static ratio
– Straightforward extension of OpenMP static to divide work unevenly among targets,

based on floating point performance by default
– Pros: No scheduling overhead
– Cons: Cannot adapt if the ratio is wrong or situation changes

Original/Master thread Worker threads Parallel region Accelerated regionReschedule

500 it

Pass 1

375 it

125 it

1,000 it

Pass 2

750 it

250 it

Initial Ratio: 0.75

synergy.cs.vt.edu

Background:
Scheduling Policies: Adaptive

• Generate a ratio based on behavior each pass
– Predicts the runtime on each device and minimizes blocking time
– Pros: Creates one task per device, can adapt to change
– Cons: Only adapts at entry to the region

500 it

Pass 1

375 it

125 it

1,000 it

Initial Ratio: 0.75

Pass 2900 it

100 it

Original/Master thread Worker threads Parallel region Accelerated regionReschedule

synergy.cs.vt.edu

Background:
Scheduling Policies: Split

• Breaks each pass into sub-passes and adapts for each
– Takes an extra parameter, “div,” for number of sub-passes to create
– Pros: Adapts faster and more often
– Cons: Higher overhead

Initial Ratio: 0.75

Original/Master thread Worker threads Parallel region Accelerated regionReschedule

500 it

110 it

15 it

113 it

12 it

113 it

12 it

113 it

12 it

1,000 it

226 it

24 it 24 it

226 it 226 it

24 it

226 it

24 it

synergy.cs.vt.edu

Background:
Scheduling Policies: Quick

• Breaks the first pass into sub-passes to train
– Uses a short sub-pass in the first pass to train, then uses adaptive
– Pros: Adapts earlier, keeps overhead similar to adaptive
– Cons: May be mis-trained by the small sub-pass

Initial Ratio: 0.75

Original/Master thread Worker threads Parallel region Accelerated regionReschedule

500 it
1,000 it

338 it

37 it

900 it

100 it

110 it

15 it

synergy.cs.vt.edu

Background:
Scheduling Policies: Quick

• Breaks the first pass into sub-passes to train
– Uses a short sub-pass in the first pass to train, then uses adaptive
– Pros: Adapts earlier, keeps overhead similar to adaptive
– Cons: May be mis-trained by the small sub-pass

Initial Ratio: 0.75

Original/Master thread Worker threads Parallel region Accelerated regionReschedule

500 it
1,000 it

338 it

37 it

900 it

100 it

110 it

15 it

Assumes each iteration
does similar
computation across
passes!

synergy.cs.vt.edu

GEMM: Accelerated OpenMP

void runGemm(T*a, T *b, T *c) {
#pragma omptarget teams distributeparallel for \

map(tofrom: c[0:N][0:N]) \
map(to: a[0:N][0:N], b[0:N][0:N])

for (int i =0; i < N; i++) {
for (int j =0; j < N; ++j) {
c[(i*N) +j] *=B;
for (intk =0; k < N; ++k) {
c[(i*N) +j] +=A *a[(i*N) + k] * b[(k*N) + j];

}
}

}
}

synergy.cs.vt.edu

GEMM: CoreTSAR Extended Accelerated OpenMP

void runGemm(T*a, T *b, T *c) {
#pragma omptarget teams distributeparallel for \

map(partial, tofrom: c[true:N][false:N]) \
map(partial, to: a[true:N][false:N]) \
map(to: b[0:N][0:N]) \
hetero(true, all, adaptive)

for (int i =0; i < N; i++) {
for (int j =0; j < N; ++j) {
c[(i*N) +j] *=B;
for (intk =0; k < N; ++k) {
c[(i*N) +j] +=A *a[(i*N) + k] * b[(k*N) + j];

}
}

}
}

Targets: All local accelerators
and CPU cores

synergy.cs.vt.edu

CoreTSAR Threading Behavior

Original/Master thread Worker threads Parallel region Accelerated region
25

synergy.cs.vt.edu

Solutions

• Adaptive scheduling to minimize launch overhead (Splitter)

• Performance-prediction for load-balancing (CoreTSAR)

• Multi-device memory management (CoreTSAR)

26

synergy.cs.vt.edu

Performance Prediction: Our Previous Approach

• Designed to “split” work between CPUs and one GPU
• Used a simple extrapolation to balance predicted runtime

• Where:

ic =
it × pg
pg + pc

ic : CPU iterations
it : Total iterations
pg : Time/Iteration for GPU
pc : Time/Iteration for CPUs

Issue: Only works for
two devices!

synergy.cs.vt.edu

Performance Prediction: Take Two

• Integer optimization program
– globally optimal distribution based on the prediction
– Minimize difference in runtimes between all devices

CoreTSAR: Task-Size Adapting Runtime A:7

I = total iterations available
ij = iterations for device j
fj = fraction of iterations for device j
pj = recent time/iteration for device j
n = number of devices

t+j (or t�j) = time over (or under) equal

(a) Variables

min(
n�1X

j=1

t+j + t�j) (1)

nX

j=1

ij = I (2)

i2 ⇤ p2 � i1 ⇤ p1 = t+1 � t�1 (3)
i3 ⇤ p3 � i1 ⇤ p1 = t+2 � t�2 (4)

...
in ⇤ pn � i1 ⇤ p1 = t+n�1 � t�n�1 (5)

(a) Objective and constraints

Fig. 5: Linear program that minimizes the workload imbalance between compute units

3.3.1. Formulation as a Linear Program. We use a linear program to extend our approach
to arbitrary device counts, a version of which was discussed briefly in our previous
work [Scogland et al.]. In order to formulate the scheduling problem in terms of a
linear program, we first model the performance of a device in terms of its past per-
formance on a given region of code. We make the assumption that the performance of
an average iteration does not change across passes through the region. Thus, the time
for a device to finish its work in the next pass equals the time per iteration from the
previous pass multiplied by its assigned iteration count. In practice this assumption
holds well: although the cost of iterations varies, the same iteration in different passes
often has similar performance, rendering accuracy within a few percent for our tests.

Figure 5 presents the linear program itself, along with its variables. This linear pro-
gram calculates the number of iterations to assign to each device in order to minimize
the sum of the predicted deviation in runtimes between all devices being scheduled.
The first constraint (Equation 2) specifies that the sum of all assigned iterations must
equal the total number of iterations to be assigned I, while not listed all iteration
counts must be integers. Each further constraint computes the absolute difference be-
tween the predicted time for device one to complete its assigned iterations i1 ⇤ p1 and
the predicted time for another device in ⇤ pn. Since device one is used as a shared
baseline between all devices, all devices are indirectly compared with one another, and
constrained. Once solved, the linear program outputs the optimal number of iterations
to distribute to each device to result in the least possible blocking time based on our
performance model.

3.3.2. Static Scheduling. As with OpenMP itself, our default schedule is static, in that
it divides the total work to be done into chunks to be computed by each device based
on a static formula. Unlike OpenMP however, CoreTSAR cannot make the assump-
tion that all devices will have reasonably similar performance. In order to deal with
the potential discrepancy, CoreTSAR divides the work based on the performance ratio
between the CPU and accelerator based resources being targeted.

While CoreTSAR can accept a ratio as a user-defined argument, that is optional, and
calculating a sensible default value is a non-trivial problem. We compute the default
ratio at runtime based on the compute resources found to be available, making the
assumption that the workload is bound by the available computational resources. In
a more simple two-device system, the result is a direct calculation of what percentage

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

CoreTSAR: Task-Size Adapting Runtime A:7

I = total iterations available
ij = iterations for device j
fj = fraction of iterations for device j
pj = recent time/iteration for device j
n = number of devices

t+j (or t�j) = time over (or under) equal

(a) Variables

min(
n�1X

j=1

t+j + t�j) (1)

nX

j=1

ij = I (2)

i2 ⇤ p2 � i1 ⇤ p1 = t+1 � t�1 (3)
i3 ⇤ p3 � i1 ⇤ p1 = t+2 � t�2 (4)

...
in ⇤ pn � i1 ⇤ p1 = t+n�1 � t�n�1 (5)

(a) Objective and constraints

Fig. 5: Linear program that minimizes the workload imbalance between compute units

3.3.1. Formulation as a Linear Program. We use a linear program to extend our approach
to arbitrary device counts, a version of which was discussed briefly in our previous
work [Scogland et al.]. In order to formulate the scheduling problem in terms of a
linear program, we first model the performance of a device in terms of its past per-
formance on a given region of code. We make the assumption that the performance of
an average iteration does not change across passes through the region. Thus, the time
for a device to finish its work in the next pass equals the time per iteration from the
previous pass multiplied by its assigned iteration count. In practice this assumption
holds well: although the cost of iterations varies, the same iteration in different passes
often has similar performance, rendering accuracy within a few percent for our tests.

Figure 5 presents the linear program itself, along with its variables. This linear pro-
gram calculates the number of iterations to assign to each device in order to minimize
the sum of the predicted deviation in runtimes between all devices being scheduled.
The first constraint (Equation 2) specifies that the sum of all assigned iterations must
equal the total number of iterations to be assigned I, while not listed all iteration
counts must be integers. Each further constraint computes the absolute difference be-
tween the predicted time for device one to complete its assigned iterations i1 ⇤ p1 and
the predicted time for another device in ⇤ pn. Since device one is used as a shared
baseline between all devices, all devices are indirectly compared with one another, and
constrained. Once solved, the linear program outputs the optimal number of iterations
to distribute to each device to result in the least possible blocking time based on our
performance model.

3.3.2. Static Scheduling. As with OpenMP itself, our default schedule is static, in that
it divides the total work to be done into chunks to be computed by each device based
on a static formula. Unlike OpenMP however, CoreTSAR cannot make the assump-
tion that all devices will have reasonably similar performance. In order to deal with
the potential discrepancy, CoreTSAR divides the work based on the performance ratio
between the CPU and accelerator based resources being targeted.

While CoreTSAR can accept a ratio as a user-defined argument, that is optional, and
calculating a sensible default value is a non-trivial problem. We compute the default
ratio at runtime based on the compute resources found to be available, making the
assumption that the workload is bound by the available computational resources. In
a more simple two-device system, the result is a direct calculation of what percentage

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

Issue: It is slow

synergy.cs.vt.edu

Integer Linear Program Performance

29

0.0001

0.001

0.01

0.1

1

10

100

2 3 4 5 6 7 8 9 10 10000

In
it

ia
l s

ol
vi

ng
 t

im
e

(S
ec

on
ds

 lo
g1

0)

Number of devices considered

synergy.cs.vt.edu

What’s Taking so Long?

30

Solve for feasible
fractional solution

Solve for
optimal

fractional
solution

Relax to optimal
integer solution

8
Iterations

For a solve with 8 devices

8
Iterations

894,973
Iterations!

synergy.cs.vt.edu

Performance Prediction: Take Three

• Linear optimization program
– Solves for a percentageof iterations rather than total number
– Guaranteed to be within exactly one iteration of optimal on each device

CoreTSAR: Task-Size Adapting Runtime A:7

I = total iterations available
ij = iterations for device j
fj = fraction of iterations for device j
pj = recent time/iteration for device j
n = number of devices

t+j (or t�j) = time over (or under) equal

(a) Variables

min(
n�1X

j=1

t+j + t�j) (1)

nX

j=1

ij = I (2)

i2 ⇤ p2 � i1 ⇤ p1 = t+1 � t�1 (3)
i3 ⇤ p3 � i1 ⇤ p1 = t+2 � t�2 (4)

...
in ⇤ pn � i1 ⇤ p1 = t+n�1 � t�n�1 (5)

(a) Objective and constraints

Fig. 5: Linear program that minimizes the workload imbalance between compute units

3.3.1. Formulation as a Linear Program. We use a linear program to extend our approach
to arbitrary device counts, a version of which was discussed briefly in our previous
work [Scogland et al.]. In order to formulate the scheduling problem in terms of a
linear program, we first model the performance of a device in terms of its past per-
formance on a given region of code. We make the assumption that the performance of
an average iteration does not change across passes through the region. Thus, the time
for a device to finish its work in the next pass equals the time per iteration from the
previous pass multiplied by its assigned iteration count. In practice this assumption
holds well: although the cost of iterations varies, the same iteration in different passes
often has similar performance, rendering accuracy within a few percent for our tests.

Figure 5 presents the linear program itself, along with its variables. This linear pro-
gram calculates the number of iterations to assign to each device in order to minimize
the sum of the predicted deviation in runtimes between all devices being scheduled.
The first constraint (Equation 2) specifies that the sum of all assigned iterations must
equal the total number of iterations to be assigned I, while not listed all iteration
counts must be integers. Each further constraint computes the absolute difference be-
tween the predicted time for device one to complete its assigned iterations i1 ⇤ p1 and
the predicted time for another device in ⇤ pn. Since device one is used as a shared
baseline between all devices, all devices are indirectly compared with one another, and
constrained. Once solved, the linear program outputs the optimal number of iterations
to distribute to each device to result in the least possible blocking time based on our
performance model.

3.3.2. Static Scheduling. As with OpenMP itself, our default schedule is static, in that
it divides the total work to be done into chunks to be computed by each device based
on a static formula. Unlike OpenMP however, CoreTSAR cannot make the assump-
tion that all devices will have reasonably similar performance. In order to deal with
the potential discrepancy, CoreTSAR divides the work based on the performance ratio
between the CPU and accelerator based resources being targeted.

While CoreTSAR can accept a ratio as a user-defined argument, that is optional, and
calculating a sensible default value is a non-trivial problem. We compute the default
ratio at runtime based on the compute resources found to be available, making the
assumption that the workload is bound by the available computational resources. In
a more simple two-device system, the result is a direct calculation of what percentage

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

4

I = total iterations available
ij = iterations for compute unit j
fj = fraction of iterations for compute unit j
pj = recent time/iteration for compute unit j (1)
n = number of compute devices

t+j (or t�j) = time over (or under) equal

min(
n�1X

j=1

t+j + t�j) (2)

nX

j=0

fj = 1 (3)

f2 ⇤ p2 � f1 ⇤ p1 = t+1 � t�1 (4)

f3 ⇤ p3 � f1 ⇤ p1 = t+2 � t�2 (5)
...

fn ⇤ pn � f1 ⇤ p1 = t+n�1 � t�n�1 (6)

Fig. 3: Our adaptive scheduler’s deviation minimization
algorithm as a linear program

schemes can. To address that case, and broaden our
evaluation, we have developed a number of new chunk-
based designs as well as a hybrid of the two approaches.

3.2.1 Static/Adaptive Schedulers

Our static and adaptive schedulers [19], [20] predict the
time that each device will take to complete an iteration in
the next pass and then run one task that executes a range
of iterations on each device such that all finish the region
as close to simultaneously as possible. These schedulers
make two assumptions: the average runtime of an itera-
tion in the region is constant on a device; and subsequent
passes through the region have the same performance
ratio as the previous pass. Also, our schedulers begin
with a default time per iteration for each device until we
have gathered runtime data. This default is either a user-
defined value, one saved from a previous run, or one
based on the formula 1/(gpuCores/cpuSIMDWidth).
While we do not claim that this formula accurately
models the relative performance of GPUs and CPUs,
in practice we have found it to be accurate for dense
floating point kernels. We leave further exploration of
default values as future work.

The linear program in Figure 3 uses the time per
iteration value for each device to calculate the fraction
of the total available iterations that should be allocated
to each device. In words, the program finds the fractions
of work that result in the minimum deviation between
predicted execution times. Our initial version of this pro-
gram calculated the optimal number of iterations directly
as an integer solution, giving theoretically optimal splits
based on our model. That solution is impractical in a
live version however due to high calculation costs. This
version is designed to still yield an optimal fractional
result, allowing the solution to be off by up to one
iteration on each device, but decreasing the computation
time by as much as an order of magnitude.

Our static schedule applies this linear program to the
default, or supplied, values once at the beginning of the
first pass through a region, then reuses the result there-
after. The adaptive schedules (adaptive, split and quick)
use a first pass with the static schedule as a training
phase. The first time that we encounter a CoreTSAR
region, we assign work based on the static schedule
and then measure the times on each device. For each
following scheduling decision, we use measured times
per iteration in the linear program, converging on a more
efficient schedule. Our design intentionally includes all
recurring data transfer and similar overheads required
to execute an iteration on a particular device, naturally
incorporating data transfer and launch overheads.

Adaptive trains on the first full pass through the region,
then adapts at the beginning of each subsequent pass.
Split is designed to adapt within regions that either
cannot tolerate a full pass with a poor schedule, or only
run once per application run. Split breaks each pass into
several evenly split subpasses, based on the div input.
It treats each subpass as the same as a full pass with
adaptive. While split provides better, and earlier, load-
balancing for some applications, it increases overhead
in each pass. Quick balances between split and adaptive
by executing a small subpass for its first training phase,
similarly to split. It then schedules and runs all itera-
tions remaining in the first pass, and uses the adaptive
schedule for all subsequent passes. This schedule suits
applications that cannot tolerate a full pass using the
static schedule or the overhead of extra scheduling steps
in every pass.

3.2.2 Chunk Schedulers

Chunk schedulers are exemplified by the OpenMP dy-
namic schedule, in which a chunk size specifies the
number of iterations assigned to each thread each time
it requests work. This is effectively a work queue ap-
proach, which offers natural load balancing. While it is a
classic load balancing approach, it is most effective when
used with homogeneous computing resources with fast
synchronization mechanisms, which is not the environ-
ment that CoreTSAR targets. Thus, we present variations
on this method for hybrid systems.

Specifically, we design three new schedules (chunk,
chunk static and chunk dynamic). Chunk serves as our
baseline chunk scheduler, and is functionally identically
to OpenMP’s dynamic schedule. Chunk static scales the
chunk size for each device based on the same scheme
used in the static schedule above. Thus, larger chunks
are provided to devices that complete their iterations
faster, with the goal of each chunk running for the same
length of time regardless of the target device. Finally,
chunk dynamic begins in the same way as chunk static then
dynamically adapts the chunk size for each device based
on their performance. Unlike the adaptive schedulers, it
does not employ the linear program to determine the
new chunk size since the chunk schedulers do not have a
natural barrier point where all times have been updated.

How does it perform?

synergy.cs.vt.edu

Linear Program Performance

32

0.0001

0.001

0.01

0.1

1

10

100

2 3 4 5 6 7 8 9 10 10000

In
it

ia
l s

ol
vi

ng
 t

im
e

(S
ec

on
ds

 lo
g1

0)

Number of devices considered

Integer

Float

synergy.cs.vt.edu

Solutions

• Adaptive scheduling to minimize launch overhead (Splitter)

• Performance-prediction for load-balancing (CoreTSAR)

• Multi-device memory management (CoreTSAR)

33

synergy.cs.vt.edu

Memory Association:

• Accelerated OpenMP:
– Maps a logically-contiguous block of memory to a compute region
– Can target only one device per thread at a time

• The alternative (or extension)
– Specify association between iterations and data
– Compute input/output set from assigned iterations in the runtime
– Reduce memory transfers by only copying assigned data
– Single directive is sufficient for any number of devices
– Maintain consistency by merging all output into host memory at the end of each

region

34

synergy.cs.vt.edu

Memory Association Syntax

35

map(partial, <direction>: <variable>[<assoc.>:<length>:<boundary>])

• <variable>: An array, matrix or pointer that conforms to the
requirements of the copy, copyin, or copyout clauses

• <assoc.>: Whether to associate the dimension with the accelerator

• <length>: The number of elements in the dimension

• <boundary>: Number of “boundary” elements required in this
dimension

synergy.cs.vt.edu

Memory Association Example: GEMM

void runGemm(T *a, T *b, T *c) {
#pragma omp target teams distribute parallel for \

map(partial, tofrom: c[true:N][false:N]) \
map(partial, to: a[true:N][false:N]) \
copyin(b[0:N][0:N]) \
hetero(true, all, adaptive)

for (int i = 0; i < N; i++) {
for (int j = 0; j < N; ++j) {
c[(i*N) + j] *= B;
for (int k = 0; k < N; ++k) {
c[(i*N) + j] += A * a[(i*N) + k] * b[(k*N) + j];

}
}

}
}

Rows, and not
columns, associated

with i

All of b is required
on each device

synergy.cs.vt.edu

Memory Association Example:
What Actually Happens?

A: row
associated

B: replicated

C: row
associated

CPU

GPU 0

GPU 1

synergy.cs.vt.edu

Memory Association Example:
Scheduling

A: row
associated

B: replicated

C: row
associated

CPU

GPU 0

GPU 1

TPI: 2

Assigned: 2

Assigned: 4

Assigned: 4

TPI: 1

TPI: 1

synergy.cs.vt.edu

Memory Association Example:
Data Distribution: Input

A: row
associated,
input only

B: replicated

C: row
associated,
input/output

CPU

GPU 0

GPU 1

Assigned: 2

Assigned: 4

Assigned: 4

synergy.cs.vt.edu

Memory Association Example:
Data Distribution: Output

A: row
associated,
input only

B: replicated

C: row
associated,
input/output

CPU

GPU 0

GPU 1

Assigned: 2

Assigned: 4

Assigned: 4

Given the associations,
all data movement is

handled by CoreTSAR

synergy.cs.vt.edu

CoreTSAR Memory-Association Example:
Simple Column-Wise Association

41

#pragma acc region hetero(TRUE) \
pcopy(mat[false:10][true:10])

Directive:

GPU-1GPU-0Main Memory

Memory not used on this device Input and outputInput only Output only

synergy.cs.vt.edu

CoreTSAR Memory-Association Example:
Row-Wise Single-Boundary

42

#pragma acc region hetero(TRUE) \
pcopy(mat[true:10:1][false:10])

Directive:

Main Memory GPU-0 GPU-1

Memory not used on this device Input and outputInput only Output only

synergy.cs.vt.edu

Results: Benchmarks
Representative Subset

• GEMM – Few passes
– Matrix multiplication benchmark from PolyBench/GPU

• K-Means – Few passes
– Iterative clustering of points

• Helmholtz – Few passes, GPU Unsuitable
– Jacobi iterative method implementing the Helmholtz equation

• CORR – Few passes, heterogeneous iterations
– Upper-triangular correlation matrix solver from PolyBench/GPU, all iterations do

different amounts of work

43

synergy.cs.vt.edu

Results: Experimental Setup

• System
– 2x 4-core Intel X5550 CPUs
– 4x NVIDIA Tesla C2070 GPUs
– Debian Squeeze Linux
– PGI Accelerator compiler version 12.9

• Procedures
– All parameters default, unless otherwise specified
– Results represent 5 or more runs

44

synergy.cs.vt.edu

Results for Co-Scheduling Amenable Benchmarks:
GEMM: Dense Linear Algebra, Matrix Multiplication

45

10 Authors Suppressed Due to Excessive Length

use an implementation is also included. We exclude only identical application
parts such as file IO and result verification.

4.3 CoreTSAR Performance

Figure 5 presents the performance impact of CoreTSAR. The graph represents
speedup over a statically scheduled eight core CPU run, with a black bar marking
the baseline in each sub-plot. Without CoreTSAR unmodified code would be
either at that baseline, or the GPU mark with one GPU. All others, including
static and GPU for a GPU count greater than one, use CoreTSAR’s facilities.
Of the six benchmarks, four scale nearly linearly from one to four GPUs given
the right scheduler. As expected, Helmholtz and CG do not.

cg corr gem

gemm helmholtz kmeans

0.0

0.3

0.6

0.9

0

50

100

150

200

250

0

10

20

30

40

50

0

50

100

150

200

0.00

0.25

0.50

0.75

1.00

0

1

2

3

4

1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4 1 2 3 4
Number of GPUs

Sp
ee

du
p

ov
er

 8
−c

or
e

O
pe

nM
P

st
at

ic

Scheduler GPU Static Adaptive Split Quick

Fig. 5: Performance of CoreTSAR enabled benchmarks on escaflowne normalized
to eight core OpenMP

Both CORR and GEMM display high GPU suitability, each approaching
an overall speedup of 250⇥ on four GPUs. We obtain the best performance for
GEMM on escaflowne by statically scheduling the computation; the quick sched-
uler is almost as good. CORR is less predictable. Its heterogeneous workload per
iteration causes the adaptive, split, and quick schedulers all to make incorrect
early decisions about how to assign work. While overall the static schedule fares
best, the split schedule overtakes it for four GPUs because the linear model stops
assigning work to the CPU cores and adaptively schedules work across the four
GPUs. It is worth noting that both the adaptive and quick schedulers converge
on e�cient assignments after the first few passes, but the cost of the early mis-

10 Authors Suppressed Due to Excessive Length

use an implementation is also included. We exclude only identical application
parts such as file IO and result verification.

4.3 CoreTSAR Performance

Figure 5 presents the performance impact of CoreTSAR. The graph represents
speedup over a statically scheduled eight core CPU run, with a black bar marking
the baseline in each sub-plot. Without CoreTSAR unmodified code would be
either at that baseline, or the GPU mark with one GPU. All others, including
static and GPU for a GPU count greater than one, use CoreTSAR’s facilities.
Of the six benchmarks, four scale nearly linearly from one to four GPUs given
the right scheduler. As expected, Helmholtz and CG do not.

cg corr gem

gemm helmholtz kmeans

0.0

0.3

0.6

0.9

0

50

100

150

200

250

0

10

20

30

40

50

0

50

100

150

200

0.00

0.25

0.50

0.75

1.00

0

1

2

3

4

1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4 1 2 3 4
Number of GPUs

Sp
ee

du
p

ov
er

 8
−c

or
e

O
pe

nM
P

st
at

ic

Scheduler GPU Static Adaptive Split Quick

Fig. 5: Performance of CoreTSAR enabled benchmarks on escaflowne normalized
to eight core OpenMP

Both CORR and GEMM display high GPU suitability, each approaching
an overall speedup of 250⇥ on four GPUs. We obtain the best performance for
GEMM on escaflowne by statically scheduling the computation; the quick sched-
uler is almost as good. CORR is less predictable. Its heterogeneous workload per
iteration causes the adaptive, split, and quick schedulers all to make incorrect
early decisions about how to assign work. While overall the static schedule fares
best, the split schedule overtakes it for four GPUs because the linear model stops
assigning work to the CPU cores and adaptively schedules work across the four
GPUs. It is worth noting that both the adaptive and quick schedulers converge
on e�cient assignments after the first few passes, but the cost of the early mis-

10 Authors Suppressed Due to Excessive Length

use an implementation is also included. We exclude only identical application
parts such as file IO and result verification.

4.3 CoreTSAR Performance

Figure 5 presents the performance impact of CoreTSAR. The graph represents
speedup over a statically scheduled eight core CPU run, with a black bar marking
the baseline in each sub-plot. Without CoreTSAR unmodified code would be
either at that baseline, or the GPU mark with one GPU. All others, including
static and GPU for a GPU count greater than one, use CoreTSAR’s facilities.
Of the six benchmarks, four scale nearly linearly from one to four GPUs given
the right scheduler. As expected, Helmholtz and CG do not.

cg corr gem

gemm helmholtz kmeans

0.0

0.3

0.6

0.9

0

50

100

150

200

250

0

10

20

30

40

50

0

50

100

150

200

0.00

0.25

0.50

0.75

1.00

0

1

2

3

4

1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4 1 2 3 4
Number of GPUs

Sp
ee

du
p

ov
er

 8
−c

or
e

O
pe

nM
P

st
at

ic

Scheduler GPU Static Adaptive Split Quick

Fig. 5: Performance of CoreTSAR enabled benchmarks on escaflowne normalized
to eight core OpenMP

Both CORR and GEMM display high GPU suitability, each approaching
an overall speedup of 250⇥ on four GPUs. We obtain the best performance for
GEMM on escaflowne by statically scheduling the computation; the quick sched-
uler is almost as good. CORR is less predictable. Its heterogeneous workload per
iteration causes the adaptive, split, and quick schedulers all to make incorrect
early decisions about how to assign work. While overall the static schedule fares
best, the split schedule overtakes it for four GPUs because the linear model stops
assigning work to the CPU cores and adaptively schedules work across the four
GPUs. It is worth noting that both the adaptive and quick schedulers converge
on e�cient assignments after the first few passes, but the cost of the early mis-

Number of GPUs

8-core CPU
baseline

Single-GPU:
baseline

Single-GPU:
Co-scheduled

synergy.cs.vt.edu

Results for Co-Scheduling Amenable Benchmarks:
GEMM: Dense Linear Algebra, Matrix Multiplication

46

10 Authors Suppressed Due to Excessive Length

use an implementation is also included. We exclude only identical application
parts such as file IO and result verification.

4.3 CoreTSAR Performance

Figure 5 presents the performance impact of CoreTSAR. The graph represents
speedup over a statically scheduled eight core CPU run, with a black bar marking
the baseline in each sub-plot. Without CoreTSAR unmodified code would be
either at that baseline, or the GPU mark with one GPU. All others, including
static and GPU for a GPU count greater than one, use CoreTSAR’s facilities.
Of the six benchmarks, four scale nearly linearly from one to four GPUs given
the right scheduler. As expected, Helmholtz and CG do not.

cg corr gem

gemm helmholtz kmeans

0.0

0.3

0.6

0.9

0

50

100

150

200

250

0

10

20

30

40

50

0

50

100

150

200

0.00

0.25

0.50

0.75

1.00

0

1

2

3

4

1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4 1 2 3 4
Number of GPUs

Sp
ee

du
p

ov
er

 8
−c

or
e

O
pe

nM
P

st
at

ic

Scheduler GPU Static Adaptive Split Quick

Fig. 5: Performance of CoreTSAR enabled benchmarks on escaflowne normalized
to eight core OpenMP

Both CORR and GEMM display high GPU suitability, each approaching
an overall speedup of 250⇥ on four GPUs. We obtain the best performance for
GEMM on escaflowne by statically scheduling the computation; the quick sched-
uler is almost as good. CORR is less predictable. Its heterogeneous workload per
iteration causes the adaptive, split, and quick schedulers all to make incorrect
early decisions about how to assign work. While overall the static schedule fares
best, the split schedule overtakes it for four GPUs because the linear model stops
assigning work to the CPU cores and adaptively schedules work across the four
GPUs. It is worth noting that both the adaptive and quick schedulers converge
on e�cient assignments after the first few passes, but the cost of the early mis-

10 Authors Suppressed Due to Excessive Length

use an implementation is also included. We exclude only identical application
parts such as file IO and result verification.

4.3 CoreTSAR Performance

Figure 5 presents the performance impact of CoreTSAR. The graph represents
speedup over a statically scheduled eight core CPU run, with a black bar marking
the baseline in each sub-plot. Without CoreTSAR unmodified code would be
either at that baseline, or the GPU mark with one GPU. All others, including
static and GPU for a GPU count greater than one, use CoreTSAR’s facilities.
Of the six benchmarks, four scale nearly linearly from one to four GPUs given
the right scheduler. As expected, Helmholtz and CG do not.

cg corr gem

gemm helmholtz kmeans

0.0

0.3

0.6

0.9

0

50

100

150

200

250

0

10

20

30

40

50

0

50

100

150

200

0.00

0.25

0.50

0.75

1.00

0

1

2

3

4

1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4 1 2 3 4
Number of GPUs

Sp
ee

du
p

ov
er

 8
−c

or
e

O
pe

nM
P

st
at

ic

Scheduler GPU Static Adaptive Split Quick

Fig. 5: Performance of CoreTSAR enabled benchmarks on escaflowne normalized
to eight core OpenMP

Both CORR and GEMM display high GPU suitability, each approaching
an overall speedup of 250⇥ on four GPUs. We obtain the best performance for
GEMM on escaflowne by statically scheduling the computation; the quick sched-
uler is almost as good. CORR is less predictable. Its heterogeneous workload per
iteration causes the adaptive, split, and quick schedulers all to make incorrect
early decisions about how to assign work. While overall the static schedule fares
best, the split schedule overtakes it for four GPUs because the linear model stops
assigning work to the CPU cores and adaptively schedules work across the four
GPUs. It is worth noting that both the adaptive and quick schedulers converge
on e�cient assignments after the first few passes, but the cost of the early mis-

10 Authors Suppressed Due to Excessive Length

use an implementation is also included. We exclude only identical application
parts such as file IO and result verification.

4.3 CoreTSAR Performance

Figure 5 presents the performance impact of CoreTSAR. The graph represents
speedup over a statically scheduled eight core CPU run, with a black bar marking
the baseline in each sub-plot. Without CoreTSAR unmodified code would be
either at that baseline, or the GPU mark with one GPU. All others, including
static and GPU for a GPU count greater than one, use CoreTSAR’s facilities.
Of the six benchmarks, four scale nearly linearly from one to four GPUs given
the right scheduler. As expected, Helmholtz and CG do not.

cg corr gem

gemm helmholtz kmeans

0.0

0.3

0.6

0.9

0

50

100

150

200

250

0

10

20

30

40

50

0

50

100

150

200

0.00

0.25

0.50

0.75

1.00

0

1

2

3

4

1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4 1 2 3 4
Number of GPUs

Sp
ee

du
p

ov
er

 8
−c

or
e

O
pe

nM
P

st
at

ic

Scheduler GPU Static Adaptive Split Quick

Fig. 5: Performance of CoreTSAR enabled benchmarks on escaflowne normalized
to eight core OpenMP

Both CORR and GEMM display high GPU suitability, each approaching
an overall speedup of 250⇥ on four GPUs. We obtain the best performance for
GEMM on escaflowne by statically scheduling the computation; the quick sched-
uler is almost as good. CORR is less predictable. Its heterogeneous workload per
iteration causes the adaptive, split, and quick schedulers all to make incorrect
early decisions about how to assign work. While overall the static schedule fares
best, the split schedule overtakes it for four GPUs because the linear model stops
assigning work to the CPU cores and adaptively schedules work across the four
GPUs. It is worth noting that both the adaptive and quick schedulers converge
on e�cient assignments after the first few passes, but the cost of the early mis-

Number of GPUs

3.37x

No gain from CPUs,
One row can be too
much for a coreStatic multi-GPU scaling

synergy.cs.vt.edu

Results for Co-Scheduling Amenable Benchmarks:
K-Means: Clustering Algorithm

47

10 Authors Suppressed Due to Excessive Length

use an implementation is also included. We exclude only identical application
parts such as file IO and result verification.

4.3 CoreTSAR Performance

Figure 5 presents the performance impact of CoreTSAR. The graph represents
speedup over a statically scheduled eight core CPU run, with a black bar marking
the baseline in each sub-plot. Without CoreTSAR unmodified code would be
either at that baseline, or the GPU mark with one GPU. All others, including
static and GPU for a GPU count greater than one, use CoreTSAR’s facilities.
Of the six benchmarks, four scale nearly linearly from one to four GPUs given
the right scheduler. As expected, Helmholtz and CG do not.

cg corr gem

gemm helmholtz kmeans

0.0

0.3

0.6

0.9

0

50

100

150

200

250

0

10

20

30

40

50

0

50

100

150

200

0.00

0.25

0.50

0.75

1.00

0

1

2

3

4

1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4 1 2 3 4
Number of GPUs

Sp
ee

du
p

ov
er

 8
−c

or
e

O
pe

nM
P

st
at

ic

Scheduler GPU Static Adaptive Split Quick

Fig. 5: Performance of CoreTSAR enabled benchmarks on escaflowne normalized
to eight core OpenMP

Both CORR and GEMM display high GPU suitability, each approaching
an overall speedup of 250⇥ on four GPUs. We obtain the best performance for
GEMM on escaflowne by statically scheduling the computation; the quick sched-
uler is almost as good. CORR is less predictable. Its heterogeneous workload per
iteration causes the adaptive, split, and quick schedulers all to make incorrect
early decisions about how to assign work. While overall the static schedule fares
best, the split schedule overtakes it for four GPUs because the linear model stops
assigning work to the CPU cores and adaptively schedules work across the four
GPUs. It is worth noting that both the adaptive and quick schedulers converge
on e�cient assignments after the first few passes, but the cost of the early mis-

10 Authors Suppressed Due to Excessive Length

use an implementation is also included. We exclude only identical application
parts such as file IO and result verification.

4.3 CoreTSAR Performance

Figure 5 presents the performance impact of CoreTSAR. The graph represents
speedup over a statically scheduled eight core CPU run, with a black bar marking
the baseline in each sub-plot. Without CoreTSAR unmodified code would be
either at that baseline, or the GPU mark with one GPU. All others, including
static and GPU for a GPU count greater than one, use CoreTSAR’s facilities.
Of the six benchmarks, four scale nearly linearly from one to four GPUs given
the right scheduler. As expected, Helmholtz and CG do not.

cg corr gem

gemm helmholtz kmeans

0.0

0.3

0.6

0.9

0

50

100

150

200

250

0

10

20

30

40

50

0

50

100

150

200

0.00

0.25

0.50

0.75

1.00

0

1

2

3

4

1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4 1 2 3 4
Number of GPUs

Sp
ee

du
p

ov
er

 8
−c

or
e

O
pe

nM
P

st
at

ic

Scheduler GPU Static Adaptive Split Quick

Fig. 5: Performance of CoreTSAR enabled benchmarks on escaflowne normalized
to eight core OpenMP

Both CORR and GEMM display high GPU suitability, each approaching
an overall speedup of 250⇥ on four GPUs. We obtain the best performance for
GEMM on escaflowne by statically scheduling the computation; the quick sched-
uler is almost as good. CORR is less predictable. Its heterogeneous workload per
iteration causes the adaptive, split, and quick schedulers all to make incorrect
early decisions about how to assign work. While overall the static schedule fares
best, the split schedule overtakes it for four GPUs because the linear model stops
assigning work to the CPU cores and adaptively schedules work across the four
GPUs. It is worth noting that both the adaptive and quick schedulers converge
on e�cient assignments after the first few passes, but the cost of the early mis-

10 Authors Suppressed Due to Excessive Length

use an implementation is also included. We exclude only identical application
parts such as file IO and result verification.

4.3 CoreTSAR Performance

Figure 5 presents the performance impact of CoreTSAR. The graph represents
speedup over a statically scheduled eight core CPU run, with a black bar marking
the baseline in each sub-plot. Without CoreTSAR unmodified code would be
either at that baseline, or the GPU mark with one GPU. All others, including
static and GPU for a GPU count greater than one, use CoreTSAR’s facilities.
Of the six benchmarks, four scale nearly linearly from one to four GPUs given
the right scheduler. As expected, Helmholtz and CG do not.

cg corr gem

gemm helmholtz kmeans

0.0

0.3

0.6

0.9

0

50

100

150

200

250

0

10

20

30

40

50

0

50

100

150

200

0.00

0.25

0.50

0.75

1.00

0

1

2

3

4

1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4 1 2 3 4
Number of GPUs

Sp
ee

du
p

ov
er

 8
−c

or
e

O
pe

nM
P

st
at

ic

Scheduler GPU Static Adaptive Split Quick

Fig. 5: Performance of CoreTSAR enabled benchmarks on escaflowne normalized
to eight core OpenMP

Both CORR and GEMM display high GPU suitability, each approaching
an overall speedup of 250⇥ on four GPUs. We obtain the best performance for
GEMM on escaflowne by statically scheduling the computation; the quick sched-
uler is almost as good. CORR is less predictable. Its heterogeneous workload per
iteration causes the adaptive, split, and quick schedulers all to make incorrect
early decisions about how to assign work. While overall the static schedule fares
best, the split schedule overtakes it for four GPUs because the linear model stops
assigning work to the CPU cores and adaptively schedules work across the four
GPUs. It is worth noting that both the adaptive and quick schedulers converge
on e�cient assignments after the first few passes, but the cost of the early mis-

Number of GPUs

GPU is 30%
faster than
CPUs

7 cores + 1 GPU
Quick is 2x faster
than 8 cores

2.2x with
4 GPUs &
4 cores

synergy.cs.vt.edu

Results for Co-Scheduling Averse Benchmarks:
Helmholtz: Jacobi Solver of the Helmholtz Equation

48

10 Authors Suppressed Due to Excessive Length

use an implementation is also included. We exclude only identical application
parts such as file IO and result verification.

4.3 CoreTSAR Performance

Figure 5 presents the performance impact of CoreTSAR. The graph represents
speedup over a statically scheduled eight core CPU run, with a black bar marking
the baseline in each sub-plot. Without CoreTSAR unmodified code would be
either at that baseline, or the GPU mark with one GPU. All others, including
static and GPU for a GPU count greater than one, use CoreTSAR’s facilities.
Of the six benchmarks, four scale nearly linearly from one to four GPUs given
the right scheduler. As expected, Helmholtz and CG do not.

cg corr gem

gemm helmholtz kmeans

0.0

0.3

0.6

0.9

0

50

100

150

200

250

0

10

20

30

40

50

0

50

100

150

200

0.00

0.25

0.50

0.75

1.00

0

1

2

3

4

1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4 1 2 3 4
Number of GPUs

Sp
ee

du
p

ov
er

 8
−c

or
e

O
pe

nM
P

st
at

ic

Scheduler GPU Static Adaptive Split Quick

Fig. 5: Performance of CoreTSAR enabled benchmarks on escaflowne normalized
to eight core OpenMP

Both CORR and GEMM display high GPU suitability, each approaching
an overall speedup of 250⇥ on four GPUs. We obtain the best performance for
GEMM on escaflowne by statically scheduling the computation; the quick sched-
uler is almost as good. CORR is less predictable. Its heterogeneous workload per
iteration causes the adaptive, split, and quick schedulers all to make incorrect
early decisions about how to assign work. While overall the static schedule fares
best, the split schedule overtakes it for four GPUs because the linear model stops
assigning work to the CPU cores and adaptively schedules work across the four
GPUs. It is worth noting that both the adaptive and quick schedulers converge
on e�cient assignments after the first few passes, but the cost of the early mis-

10 Authors Suppressed Due to Excessive Length

use an implementation is also included. We exclude only identical application
parts such as file IO and result verification.

4.3 CoreTSAR Performance

Figure 5 presents the performance impact of CoreTSAR. The graph represents
speedup over a statically scheduled eight core CPU run, with a black bar marking
the baseline in each sub-plot. Without CoreTSAR unmodified code would be
either at that baseline, or the GPU mark with one GPU. All others, including
static and GPU for a GPU count greater than one, use CoreTSAR’s facilities.
Of the six benchmarks, four scale nearly linearly from one to four GPUs given
the right scheduler. As expected, Helmholtz and CG do not.

cg corr gem

gemm helmholtz kmeans

0.0

0.3

0.6

0.9

0

50

100

150

200

250

0

10

20

30

40

50

0

50

100

150

200

0.00

0.25

0.50

0.75

1.00

0

1

2

3

4

1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4 1 2 3 4
Number of GPUs

Sp
ee

du
p

ov
er

 8
−c

or
e

O
pe

nM
P

st
at

ic
Scheduler GPU Static Adaptive Split Quick

Fig. 5: Performance of CoreTSAR enabled benchmarks on escaflowne normalized
to eight core OpenMP

Both CORR and GEMM display high GPU suitability, each approaching
an overall speedup of 250⇥ on four GPUs. We obtain the best performance for
GEMM on escaflowne by statically scheduling the computation; the quick sched-
uler is almost as good. CORR is less predictable. Its heterogeneous workload per
iteration causes the adaptive, split, and quick schedulers all to make incorrect
early decisions about how to assign work. While overall the static schedule fares
best, the split schedule overtakes it for four GPUs because the linear model stops
assigning work to the CPU cores and adaptively schedules work across the four
GPUs. It is worth noting that both the adaptive and quick schedulers converge
on e�cient assignments after the first few passes, but the cost of the early mis-

10 Authors Suppressed Due to Excessive Length

use an implementation is also included. We exclude only identical application
parts such as file IO and result verification.

4.3 CoreTSAR Performance

Figure 5 presents the performance impact of CoreTSAR. The graph represents
speedup over a statically scheduled eight core CPU run, with a black bar marking
the baseline in each sub-plot. Without CoreTSAR unmodified code would be
either at that baseline, or the GPU mark with one GPU. All others, including
static and GPU for a GPU count greater than one, use CoreTSAR’s facilities.
Of the six benchmarks, four scale nearly linearly from one to four GPUs given
the right scheduler. As expected, Helmholtz and CG do not.

cg corr gem

gemm helmholtz kmeans

0.0

0.3

0.6

0.9

0

50

100

150

200

250

0

10

20

30

40

50

0

50

100

150

200

0.00

0.25

0.50

0.75

1.00

0

1

2

3

4

1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4 1 2 3 4
Number of GPUs

Sp
ee

du
p

ov
er

 8
−c

or
e

O
pe

nM
P

st
at

ic

Scheduler GPU Static Adaptive Split Quick

Fig. 5: Performance of CoreTSAR enabled benchmarks on escaflowne normalized
to eight core OpenMP

Both CORR and GEMM display high GPU suitability, each approaching
an overall speedup of 250⇥ on four GPUs. We obtain the best performance for
GEMM on escaflowne by statically scheduling the computation; the quick sched-
uler is almost as good. CORR is less predictable. Its heterogeneous workload per
iteration causes the adaptive, split, and quick schedulers all to make incorrect
early decisions about how to assign work. While overall the static schedule fares
best, the split schedule overtakes it for four GPUs because the linear model stops
assigning work to the CPU cores and adaptively schedules work across the four
GPUs. It is worth noting that both the adaptive and quick schedulers converge
on e�cient assignments after the first few passes, but the cost of the early mis-

Number of GPUs

Using GPUs
loses ~10%

synergy.cs.vt.edu

Results for Co-Scheduling Averse Benchmarks:
Helmholtz: With and Without GPU Back-off

49

A:12 T. Scogland et al.

Adaptive Split Quick

0.00

0.25

0.50

0.75

1 2 3 4 1 2 3 4 1 2 3 4
Number of GPUs

Sp
ee

du
p

fro
m

 8
−c

or
e

CP
U

Implementation Original With optimization

Fig. 9: Helmholtz with and without GPU back-off support

end of each pass. If a GPU’s TPI falls below that value for two consecutive iterations,
the GPU thread releases the GPU and continues as a CPU thread.

We evaluate this optimization with a benchmark, a solver of the Helmholtz equation,
that is so ill-suited to running on GPUs that running a single iteration on a GPU
increases overall runtime1. Thus, CoreTSAR cannot improve performance by using
GPUs. However, a robust solution adapts to avoid slowdowns. We envision cases in
which using a GPU reduces performance on one system but improves it on another
(for example, with an integrated GPU). CoreTSAR should allow a user to use the same
code on both systems. We discuss this topic further in Section 5.4.

Figure 9 displays the results for Helmholtz without GPU back-off in Original and
with it in With GPU back-off. While neither result matches the CPU performance,
With GPU back-off is as much as 24⇥ faster than Original. Further, having released
the GPUs, it uses fewer resources and less power. Regardless of the number of GPUs,
CoreTSAR stops using all of them for this case. While we do not achieve speedup, we
reduce the loss imposed by an unsuitable application to within 20% in most cases.

4.3. CoreTSAR API and Usage
The CoreTSAR API is made up of scheduling functions, memory functions and the
initialization function. We briefly describe each API function and then give an example
of their use.

4.3.1. API Functions. ctsar init Serves as the API equivalent of our proposed hetero()

clause, specifying the defaults to use for a parallel region, and allocating an instance
of CoreTSAR to use for that region.

ctsar next Evaluates the scheduling algorithm and determines what iterations to
assign to each device in this pass, also copies inputs onto each device.

ctsar loop Copies output back from each device, finalizes reductions, tests for GPU
back-off, and determines whether another sub-pass is necessary to complete the pass
for the Quick and Split schedulers.

1This problem is not inherent in the Helmholtz method. This implementation was designed for CPUs and
running it on a GPU with accelerated OpenMP produces a particularly slow result. Section 5.5 includes a
more GPU-suited version implemented in CUDA.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

With GPU-backoffWith GPU-backoff

synergy.cs.vt.edu

Results for Co-Scheduling Averse Benchmarks:
PolyBench CORR: Upper Triangular Matrix, Correlation

50

10 Authors Suppressed Due to Excessive Length

use an implementation is also included. We exclude only identical application
parts such as file IO and result verification.

4.3 CoreTSAR Performance

Figure 5 presents the performance impact of CoreTSAR. The graph represents
speedup over a statically scheduled eight core CPU run, with a black bar marking
the baseline in each sub-plot. Without CoreTSAR unmodified code would be
either at that baseline, or the GPU mark with one GPU. All others, including
static and GPU for a GPU count greater than one, use CoreTSAR’s facilities.
Of the six benchmarks, four scale nearly linearly from one to four GPUs given
the right scheduler. As expected, Helmholtz and CG do not.

cg corr gem

gemm helmholtz kmeans

0.0

0.3

0.6

0.9

0

50

100

150

200

250

0

10

20

30

40

50

0

50

100

150

200

0.00

0.25

0.50

0.75

1.00

0

1

2

3

4

1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4 1 2 3 4
Number of GPUs

Sp
ee

du
p

ov
er

 8
−c

or
e

O
pe

nM
P

st
at

ic

Scheduler GPU Static Adaptive Split Quick

Fig. 5: Performance of CoreTSAR enabled benchmarks on escaflowne normalized
to eight core OpenMP

Both CORR and GEMM display high GPU suitability, each approaching
an overall speedup of 250⇥ on four GPUs. We obtain the best performance for
GEMM on escaflowne by statically scheduling the computation; the quick sched-
uler is almost as good. CORR is less predictable. Its heterogeneous workload per
iteration causes the adaptive, split, and quick schedulers all to make incorrect
early decisions about how to assign work. While overall the static schedule fares
best, the split schedule overtakes it for four GPUs because the linear model stops
assigning work to the CPU cores and adaptively schedules work across the four
GPUs. It is worth noting that both the adaptive and quick schedulers converge
on e�cient assignments after the first few passes, but the cost of the early mis-

10 Authors Suppressed Due to Excessive Length

use an implementation is also included. We exclude only identical application
parts such as file IO and result verification.

4.3 CoreTSAR Performance

Figure 5 presents the performance impact of CoreTSAR. The graph represents
speedup over a statically scheduled eight core CPU run, with a black bar marking
the baseline in each sub-plot. Without CoreTSAR unmodified code would be
either at that baseline, or the GPU mark with one GPU. All others, including
static and GPU for a GPU count greater than one, use CoreTSAR’s facilities.
Of the six benchmarks, four scale nearly linearly from one to four GPUs given
the right scheduler. As expected, Helmholtz and CG do not.

cg corr gem

gemm helmholtz kmeans

0.0

0.3

0.6

0.9

0

50

100

150

200

250

0

10

20

30

40

50

0

50

100

150

200

0.00

0.25

0.50

0.75

1.00

0

1

2

3

4

1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4 1 2 3 4
Number of GPUs

Sp
ee

du
p

ov
er

 8
−c

or
e

O
pe

nM
P

st
at

ic

Scheduler GPU Static Adaptive Split Quick

Fig. 5: Performance of CoreTSAR enabled benchmarks on escaflowne normalized
to eight core OpenMP

Both CORR and GEMM display high GPU suitability, each approaching
an overall speedup of 250⇥ on four GPUs. We obtain the best performance for
GEMM on escaflowne by statically scheduling the computation; the quick sched-
uler is almost as good. CORR is less predictable. Its heterogeneous workload per
iteration causes the adaptive, split, and quick schedulers all to make incorrect
early decisions about how to assign work. While overall the static schedule fares
best, the split schedule overtakes it for four GPUs because the linear model stops
assigning work to the CPU cores and adaptively schedules work across the four
GPUs. It is worth noting that both the adaptive and quick schedulers converge
on e�cient assignments after the first few passes, but the cost of the early mis-

10 Authors Suppressed Due to Excessive Length

use an implementation is also included. We exclude only identical application
parts such as file IO and result verification.

4.3 CoreTSAR Performance

Figure 5 presents the performance impact of CoreTSAR. The graph represents
speedup over a statically scheduled eight core CPU run, with a black bar marking
the baseline in each sub-plot. Without CoreTSAR unmodified code would be
either at that baseline, or the GPU mark with one GPU. All others, including
static and GPU for a GPU count greater than one, use CoreTSAR’s facilities.
Of the six benchmarks, four scale nearly linearly from one to four GPUs given
the right scheduler. As expected, Helmholtz and CG do not.

cg corr gem

gemm helmholtz kmeans

0.0

0.3

0.6

0.9

0

50

100

150

200

250

0

10

20

30

40

50

0

50

100

150

200

0.00

0.25

0.50

0.75

1.00

0

1

2

3

4

1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4 1 2 3 4
Number of GPUs

Sp
ee

du
p

ov
er

 8
−c

or
e

O
pe

nM
P

st
at

ic

Scheduler GPU Static Adaptive Split Quick

Fig. 5: Performance of CoreTSAR enabled benchmarks on escaflowne normalized
to eight core OpenMP

Both CORR and GEMM display high GPU suitability, each approaching
an overall speedup of 250⇥ on four GPUs. We obtain the best performance for
GEMM on escaflowne by statically scheduling the computation; the quick sched-
uler is almost as good. CORR is less predictable. Its heterogeneous workload per
iteration causes the adaptive, split, and quick schedulers all to make incorrect
early decisions about how to assign work. While overall the static schedule fares
best, the split schedule overtakes it for four GPUs because the linear model stops
assigning work to the CPU cores and adaptively schedules work across the four
GPUs. It is worth noting that both the adaptive and quick schedulers converge
on e�cient assignments after the first few passes, but the cost of the early mis-

Number of GPUs

GPU and Static scale well

Why are the adaptive
schedules going insane?

synergy.cs.vt.edu

CORR Execution Pattern

51

Split along rows

Every iteration, and range, does a different amount of work!

synergy.cs.vt.edu

CORR Scheduling Behavior with Adaptive

0.00

0.25

0.50

0.75

1.00

Adaptive

1 2 3 4 5 6 7 8 9 10

Pass number

Pe
rc

en
t o

f w
or

k
as

si
gn

ed
 to

 e
ac

h
de

vi
ce

Device type CPU GPU

52

Uneven work between iterations causes oscillations in Adaptive

synergy.cs.vt.edu

CORR Scheduling Behavior with Split

53

0.00

0.25

0.50

0.75

1.00

Split

1 2 3 4 5 6 7 8 9 10

Pass number

Pe
rc

en
t o

f w
or

k
as

si
gn

ed
 to

 e
ac

h
de

vi
ce

Device type CPU GPU

Split does better, by not using the CPU cores!

synergy.cs.vt.edu

CORR with Adaptive GPU-only

corr

0

50

100

150

1 2 3 4
Scheduler

Sp
ee

du
p

ov
er

 8
 c

or
e

O
pe

nM
P

Scheduler GPU Static Adaptive Adaptive GPU Split

54
Number of GPUs

Adaptive with only GPUs scales best

synergy.cs.vt.edu

Comparison with State of the Art

• Chose two popular task schedulers
– OmpSs
– StarPU

• Both are general task schedulers
– Arbitrary graphs of dependent tasks can be expressed
– Scheduling is focused on distributing discrete tasks rather than loop iterations

• Our approach is complementary to theirs

55

synergy.cs.vt.edu

Comparison with State of the Art: Setup

• Ported three of the benchmarks to the OmpSs and StarPU task
schedulers
– CUDA/c versions of each kernel function added
– OmpSs: Versioning stack scheduler used to allow alternatives, automatic

scheduling between CPUs and GPUs
– StarPU: directly implemented in c API using the history based performance

model, primed with 10 runs, and the dmdascheduler
• Created CoreTSAR scheduled versions using the CUDA/C kernels

– CoreTSAR does notrequire accelerated OpenMP regions
– Allows direct 1-1 comparison with identical compute regions

• All compiled with –O3 on:
– nvcc: CoreTSAR and StarPU
– mnvcxx: OmpSs

56

synergy.cs.vt.edu

Results Compared with OmpSs and StarPU

57

CoreTSAR: Adaptive Worksharing for Heterogeneous Systems 13

transfers, or even an error in our implementation of the memory movement in
OmpSS and StarPU, but manually minimizing the data transfers did not sig-
nificantly change the result. Rather, it seems that overhead from task creation,
management and scheduling for all of the individual tasks is to blame for the
di↵erence. CoreTSAR has the advantage of automatically altering the granular-
ity of tasks, rather than running user-defined chunks. In the adaptive scheduler
for example, a single kernel is run on each GPU, whereas in OmpSs hundreds to
thousands may be run. No matter how e�cient the runtime, there is a cost for
such fine-grained management.

gemm helmholtz kmeans

0

10

20

30

40

50

0.0

0.5

1.0

1.5

0

2

4

CoreTSAR

OmpSs

StarPU
CoreTSAR

OmpSs

StarPU
CoreTSAR

OmpSs

StarPU

Scheduler

Sp
ee

du
p

ov
er

 8
 c

or
e

O
pe

nM
P

Scheduler GPU Static Adaptive Split Quick OmpSs StarPU

Fig. 7: Speedup comparison between CoreTSAR, OmpSs and StarPU

Helmholtz is of interest for a di↵erent reason. The CUDA and serial C version
gets materially faster by running on four GPUs, especially with the CoreTSAR
adaptive or quick schedules with a nearly 75% improvement. The reason it per-
forms so di↵erently from the version evaluated above is that the nvcc compiler
produces significantly slower CPU code than the PGI compiler used elsewhere,
allowing the GPUs to outperform the CPUs. This result reinforces the idea
that allowing automatic coscheduling, even in cases where it does benefit some
machines or configurations, can be beneficial. OmpSs also improves on the CPU-
only performance by about 5%, and StarPU almost 2⇥ slower. Our evaluation
found that this is due to underutilizing the CPU cores in favor of the GPUs, as
well as the same overheads that plague GEMM.

Finally the kmeans results show OmpSs scaling to a respectable 3.5⇥, and
StarPU to over 4⇥ as fast as the CPU static. Even so, they once again trail the
CoreTSAR adaptive schedulers. For cases where the application launches and
immediately waits for a range of related tasks, CoreTSAR performs consistently
well. OmpSs and StarPU perform reasonably, but slower in this case, as they
are targeted ad arbitrary task graphs rather than this use-case specifically. We
believe these are complimentary designs, and will investigate granularity adap-
tation for general task graph scheduling systems as future work.

synergy.cs.vt.edu

Conclusions

• Adaptive scheduling and dynamic task granularity provided speedups
of as much as 2x over alternative methods

• Our dynamic schedulers achieve high performance across various
applications and highly heterogeneous machines

• Heterogeneous task scheduling for accelerated OpenMP is a feasible
and useful extension

58

Questions?

synergy.cs.vt.edu

Future Directions

• Explore other accelerators such as FPGAs
– OpenCL vs Synthesis

• Cost of memory movement not included in model
– Stencil codes need boundaries which are calculated in each iteration
– Cost vs benefit of moving boundaries between accelerators in each iteration
– Asynchronous coherence?

• Uneven work in each iteration across passes
– Application profiling?

59

