


Resource Elastic
Virtualization for FPGAs
using OpenCL

Anuj Vaishnav
Co-Authors: K. D. Pham, D. Koch & J. Garside
School of Computer Science
The University of Manchester

MANCHESTER
1824

The University of Manchester




MANCHESTER
1824

The University of Manchester

FPGA Deployment

- Cloud Providers: Amazon, Baidu, IBM, Alibaba, Huawei, Nimbix...

- Microsoft: Behind the scene deployment in data centers across
15 countries and 5 continents*

- Backbone for ExaScale computing projects (e.g. ECOSCALE,
ExaNeSt, EuroEXA)

*A. M. Caulfield et al., "A cloud-scale acceleration architecture," 49th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), Taipei, 2016, pp. 1-13.



MANCHESTER
1824

The University of Manchester

Current FPGA world

Saving & Restoring

/ state is costly

- Run-to-completion model => No Context switch (in most cases)

- No migration of workload without restarting or too many constraints
- Single user application per FPGA (in most cases)

- No scalability of performance with more FPGA resources without

re-design
4 D
Partial
regions 3 C Free resources
(S|Ot) 2 B
1 A



MANCHESTER
1824

The University of Manchester

Resource Elasticity

Definition: Ability of kernels to grow and shrink
its resource footprint transparently from the
user.

= N W b

Grow and shrink how?

- Module replication A
- Module replacement

Potentially linear
performance gain

Potentially super-linear
performance gain



MANCHESTER
1824

The University of Manchester

Resource Elasticity Trade-offs

- Multiple instances vs Different sized module
- Run to completion vs Changing module layout ~_ Isitworth it given
- Collocated change vs Distributed change the overhead?

: A B A
Deal with
fragmentation 5 £ -
A B

A A A A
A



MANCHESTER

1824
The University of Manchester

Context Switching

Internal
- Preemptive scheduling State
techniques:
) Configurgtion read back Q M ’
- Scan chains
- Cooperative scheduling N
approach: Only perform

context switch at consistency x K
points e W Ny
2222

—>




MANCHESTER
1824

The University of Manchester

OpenCL

for (i=0;i<16; i++)
for (j =0;j < 16; j++)
for (k = 0; k < 16; k++)
- Designed for heterogeneous systems

- Work-group is made up of work-items
(lightweight threads)

- Inside work-group, synchronization
primitives can be used

- No execution order or
synchronization across work-groups

N

Application

Workgroup ———*

Allows Context Switching: No WGT1 WGn
read and write of internal state * *
required




MANCHESTER
1824

The University of Manchester

Base infrastructure

: e Slot: where modules are
Main features: Flexibility of / placed

/ scheduling

- Multiple partial regions (also called
slots) side by side

- Vivado HLS to generate OpenCL
accelerators

- Placed & routed as relocatable
accelerators

M\
il Standard
I Interface

Perform context switch at . . ’
the end of work-group (bunch Stgtéclge?(':‘;n —
I RIEETRY g

Zynq UltraScale+



Base infrastructure

Main features: Flexibility of

/ scheduling

- Multiple partial regions (also called

slots) side by side

- Vivado HLS to generate OpenCL
accelerators

- Placed & routed as relocatable
accelerators

Perform context switch at
the end of work-group (bunch
of threads)

MANCHESTER
1824

The University of Manchester

Slot: where modules are
placed

\
Standard

Static region
(OS logic)

Interface

Zynq UltraScale+

10



MANCHESTER
1824

The University of Manchester

Base infrastructure

Slot: where modules are

Main features: Flexibility of placed

/ scheduling

- Multiple partial regions (also called
slots) side by side

- Vivado HLS to generate OpenCL
accelerators ELRERLELENDUECLILEY | S

- Placed & routed as relocatable
accelerators

\
Standard
nterface

Perform context switch at : :
the end of work-group (bunch Stgtlsclge?lcm —FE
of threads) gic)

Zynq UltraScale+

11



MANCHESTER
1824

The University of Manchester

Accelerator generation and execution

——————————————————————————————————————————————————————————————————————————————————————————————

User Input

User
Optimization

Host Execution

_

12



Scheduling algorithm

Module layouts with replication
and replacement

A B A

Ranking functions for
optimization parameters based
on performance gain and
overheads

Partial reconfiguration and
programming accelerators
(if beneficial)

MANCHESTER
1824

The University of Manchester

Schedule event: at the end of
work-group / kernel arrival

v

Generate
Configurations

l

Rank Configurations

l

Make Changes

Resource
allocation

Resource
binding

13



MANCHESTER
1824

The University of Manchester

Virtualization Architecture

Standard OpenCL Flow Virtualization

(Xilinx SDAccel) Changes OILIF OfpSHC (7o Main

Operating System Operating System

— >
Aéifijiii '
Application  WIYNI FPGA Fabric
Specific

AN

Generic

Virtualization
Application - Jy / Layer
_—

14



MANCHESTER
1824

The University of Manchester

Time multiplexing

When we run out of space: Swap kernels to waiting queue

- Allows overcommitment of resources by time multiplexing

' Resource Manager
Waiting Queue
Reconfigure l
v
FPGA ; » Scheduler — PR Manager | Data Manager
7' Work-group
completian I
: e |
| . Metadata |
Program _ T
Kernel

26



MANCHESTER
1824

The University of Manchester

Space-Time Scheduling at Runtime

task A,o0 taskB,60 task C,30
a) X >§< X
reconfiguration

x

“Ncompute load

15




MANCHESTER
1824

The University of Manchester

Evaluation

Baseline scheduling policies:

- Run to Completion (NS)

- Conservative Cooperative Scheduling (CCS> Using the same context
- Aggressive Cooperative Scheduling (ACS) switching mechanism

Resource elastic schedulers (RES):

- Standard RES (SRES) : Optimizes for fairness + utilization
- Performance RES (PRES) : Optimizes for performance

Do not look into the future.

16



MANCHESTER
1824
The University of Manchester

Simulation Results



MANCHESTER
1824

The University of Manchester

Completion and Wait Time Results

25000
0
=
S 20000
©
£
<= 15000
©
S
— 10000
[
©
©
a 5000
€
o
@) 0
PRES SRES
B 2slots . 4slots B 8slots W 16slots

PRES can achieve performance benefit
between 39% to 64%

1000
«®
'c
>
©
£ 100
©
£
l_
= 10
®©
: I
o
S
Z || | I l
1
PRES SRES
B 2slots . 4 slots 'v 8slots [ 16slots

Similar wait times unless module tends to
take up the whole FPGA.

18




MANCHESTER
1824

The University of Manchester

Resource Elastic Scheduler Overhead

—~ 0.06
n
= _ 1000
= C
© 3
S 0.04 o
.E [
2 2
6 §
8 002 1 o .g
) 12
x }
g 0.00 — - s -
NS CCS ACS PRES SRES PRES SRES
B 2siots W 4slots M 8slots W 16slots B 2slots . 4slots W 8slots W 16slots
Scheduler wake up call overhead between Higher partial reconfiguration calls but

12x to 100x relatively similar to ACS

19




MANCHESTER
1824

The University of Manchester

Utilization and Speedup

1

< _ -

2

o 075 [

e

©

©

2 05 r

S

N ‘

= 025 L i E

3 ! a

5 |

>

< O NG Sl i

NS CCS ACS PRES SRES

B 2siots [ 4slots [ 8slots [ 16slots

RES improves utilization by 2.3x compared
to ACS and 2.7x compared to NS

80

. 60 ‘ |
2
a
3 40 | |
o I
o)
5]
o
wn 20 s | |
O | : H
NS vs PRES CCSvs PRES ACSvsPRES
B 2siots [ 4slots [ 8slots [ 16slots

Provides considerable performance
benefits despite the PR overheads.

20




MANCHESTER
1824

The University of Manchester

Case Study

The static system would be introduced in FSP workshop: ZUCL

1]

ol v
-
-
-
-
-
-
i
-
=

.

4

=rerur /
g THUT -wm-f-:rrj \&
RaEa{iH E‘umg u;;uu

: :umzwmmem uwwm.w

= niimEE sy

GitHub: https://github.com/zuclfpl/zucl_fsp o



MANCHESTER
1824

The University of Manchester

Case Study

v e-dist

- cre32 #configuration
4
PRES: a) 33
L PRES gets too
4 greedy while
SRES: b) 5 3 ‘ SRES attempts
1 to be fair
4
ACS: 0 33
1
4
CCS/NS: o 2
1

22




MANCHESTER
1824

The University of Manchester

Case Study Results

- Similar wait time

- Performance improvement:
- 36 % (SRES vs ACS)
- 73.8 % (SRES vs CCS/NS)

SRES (ms) | PRES (ms) | ACS (ms) | CCS/NS (ms)
Mmult wait time 12 12 12 3
CRC32 wait time 4 4 4 3
E-dist wait time 7 7 7 6
Total Completion time 320 368 501 1221

23



MANCHESTER
1824

The University of Manchester

Summary

- Concept of resource elasticity
- Cooperative scheduling for FPGAs

- First working resource elastic system
- Supporting tool flow: from HLS to Runtime system
- Performance gains in the range of 39 % to 64%

24



MANCHESTER
1824

The University of Manchester

Conclusions

Key takeaways:

- Future OS / virtual machines for FPGAs need to consider spatial
domain
- Cooperative scheduling can be a good fit for FPGAs

Features of RES:

Higher performance and utilization

Scale performance with FPGA resources (using dynamic replication)
Migration of accelerators

Overcommitment of resources w.r.t. Quality of Service

25






; " P
Orniie.
isen st gt R

* Resource Elasticity — Due to different resource availability




N

l MIGRATION

*“Usually requires saving state

O
® For CPU task

Master runtime

® Register state
Slave runtime Slave runtime

®* Memory state
7 Task D ek E
as
® Etc. Task C
O

. ® More difficult for FPGAs Tes

0
)
<
o
o
w

FPGA OS

Task A
JaskA

*-Migrate between OpenCL workgroups

Accelerator
° . M- t.
® Consistency point igration

Fig. 1: Migration of FPGA accelerators.
®* Two methods — blocking, non-blocking.



\\& MIGRATION (CONTD.)
I

o Migration

® Run to completion

® Blocking
® Pause execution at the end of workgroup
* Transfer accelerator bitstream, input/output

® Restart execution

® Non-Blocking

® Transfer bitstream, input data while previous

work group is still in execution
® Restart next workgroup at target

* Transfer output from source and merge

Execution at
Source

b)

Execution at
Source

Bitstream Transfer

Input & Output
Data Transfer

Execution at Target

c)

Execution at
Source
Bitstream Transfer

Input Data Transfer
Execution at Target

Source Output Data
Transfer

Data Merging at
Target

Execution Completion

—



O

1\\; ARCHITECTURE Call & Input Data

REV slave node

Master Slave
Data Manager REV Scheduler

REV Slave

Module Slot 1

Operating System
PR driver Module Slot 2

IP Stack

§ Module Slot 3
(e

FPGA Fabric Module Slot 4

Master /Slave approach
Master runs host code and resource allocation
Slaves execute accelerators, heartbeat to master

Enables load balancing

REV Master

REV Slave
Module Slot 1
Module Slot 2
Module Slot 3

Module Slot 4

Output Data

Virtual OpenCL
Device

REV Slave
Module Slot 1
8 Module Slot 2
Module Slot 3

Module Slot 4




Fav

® Load balancing e

® Maintenance




o mbining CPU, GPU(s), FPGA(s)

i S

®* Work gro't"'nﬁ"d'r»\,._ R ——

®* Depending on application(s) — Partition kernel over multiple devices, or share resources
P d PP P
with other jobs

* GPUDirect (maybe FPGADirect) for intra-node /inter-node communication

® No CPU overhead (almost)




