
FPGA VIRTUALIZATION, MIGRATION AND
RESOURCE ELASTICITY – RELATED WORK

Presented by Harsh Khetawat

03/28/2019

Resource Elastic
Virtualization for FPGAs

using OpenCL

Anuj Vaishnav
Co-Authors: K. D. Pham, D. Koch & J. Garside

School of Computer Science
The University of Manchester

FPGA Deployment

- Cloud Providers: Amazon, Baidu, IBM, Alibaba, Huawei, Nimbix...
- Microsoft: Behind the scene deployment in data centers across

15 countries and 5 continents*
- Backbone for ExaScale computing projects (e.g. ECOSCALE,

ExaNeSt, EuroEXA)

2
*A. M. Caulfield et al., "A cloud-scale acceleration architecture," 49th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), Taipei, 2016, pp. 1-13.

Current FPGA world

A

B

C

D

- Run-to-completion model => No Context switch (in most cases)
- No migration of workload without restarting or too many constraints
- Single user application per FPGA (in most cases)
- No scalability of performance with more FPGA resources without

re-design

1

2

3

4
Partial
regions
(slot)

Time

Free resources

3

Saving & Restoring
state is costly

Resource Elasticity

Definition: Ability of kernels to grow and shrink
its resource footprint transparently from the
user.

Grow and shrink how?

- Module replication
- Module replacement

A A A A

A A A A

A

4

Potentially super-linear
performance gain

Potentially linear
performance gain

1

2

3
4

1 2 3 4

1 2 3 4

Resource Elasticity Trade-offs

- Multiple instances vs Different sized module
- Run to completion vs Changing module layout
- Collocated change vs Distributed change

Deal with
fragmentation A A B

A B A

A B

A A A A

A A A A

A

5

Is it worth it, given
the overhead?

Context Switching

- Preemptive scheduling
techniques:

- Configuration read back
- Scan chains

- Cooperative scheduling
approach: Only perform
context switch at consistency
points

7

Internal
State

OpenCL

- Designed for heterogeneous systems
- Work-group is made up of work-items

(lightweight threads)
- Inside work-group, synchronization

primitives can be used
- No execution order or

synchronization across work-groups

WG1

Compute
Device1

Compute
DeviceN

WGn

Application

Workgroup

....

....

8

Allows Context Switching: No
read and write of internal state

required

for (i = 0; i < 16; i++)
for (j = 0; j < 16; j++)

for (k = 0; k < 16; k++)

Base infrastructure

Main features:

- Multiple partial regions (also called
slots) side by side

- Vivado HLS to generate OpenCL
accelerators

- Placed & routed as relocatable
accelerators

Slot: where modules are
placed

Static region
(OS logic)

Perform context switch at
the end of work-group (bunch

of threads)

Flexibility of
scheduling

Standard
Interface

9

Zynq UltraScale+

Base infrastructure

Main features:

- Multiple partial regions (also called
slots) side by side

- Vivado HLS to generate OpenCL
accelerators

- Placed & routed as relocatable
accelerators

A

Slot: where modules are
placed

Static region
(OS logic)

Perform context switch at
the end of work-group (bunch

of threads)

Flexibility of
scheduling

Standard
Interface

10

Zynq UltraScale+

Base infrastructure

Main features:

- Multiple partial regions (also called
slots) side by side

- Vivado HLS to generate OpenCL
accelerators

- Placed & routed as relocatable
accelerators

A

Slot: where modules are
placed

Static region
(OS logic)

Perform context switch at
the end of work-group (bunch

of threads)

Flexibility of
scheduling

Standard
Interface

11

Zynq UltraScale+

Accelerator generation and execution

Host Execution

Kernel (.cl)

Bitstreams +
Meta-data

HLS compilation

User
Optimization

Host code
(.cpp/.c)

Host binary
Runtime
Resource
Manager

FPGA Execution

User Input

API

12

Scheduling algorithm

Generate
Configurations

Rank Configurations

Make Changes

Schedule event: at the end of
work-group / kernel arrival

Module layouts with replication
and replacement

Ranking functions for
optimization parameters based

on performance gain and
overheads

Partial reconfiguration and
programming accelerators

(if beneficial)

Resource
allocation

Resource
binding

13

A B A

Virtualization Architecture

14

Hardware OS

Xilinx Drivers

Xilinx OpenCL Runtime

Application

Operating System

Virtualization
Changes

Custom Hardware OS

Custom Drivers

RES OpenCL Runtime

App

Operating System

Application
Specific

Generic

Standard OpenCL Flow
(Xilinx SDAccel) Our OpenCL Flow Main

Virtualization
LayerApp App

FPGA Fabric FPGA Fabric

Time multiplexing

26

Scheduler PR Manager Data ManagerFPGA

Waiting Queue

Metadata

Resource Manager

Reconfigure

Program
Kernel

Work-group
completion

When we run out of space: Swap kernels to waiting queue

- Allows overcommitment of resources by time multiplexing

Space-Time Scheduling at Runtime

1515

Evaluation

Baseline scheduling policies:

- Run to Completion (NS)
- Conservative Cooperative Scheduling (CCS)
- Aggressive Cooperative Scheduling (ACS)

Resource elastic schedulers (RES):

- Standard RES (SRES) : Optimizes for fairness + utilization
- Performance RES (PRES) : Optimizes for performance

16

Do not look into the future.

Using the same context
switching mechanism

Simulation Results

17

Completion and Wait Time Results

1818

PRES can achieve performance benefit
between 39% to 64%

Similar wait times unless module tends to
take up the whole FPGA.

C
om

pl
et

io
n

Ti
m

e
(ti

m
e

un
its

)

A
vg

 W
ai

t T
im

e
(ti

m
e

un
its

)

Resource Elastic Scheduler Overhead

1919

Scheduler wake up call overhead between
12x to 100x

Higher partial reconfiguration calls but
relatively similar to ACS

W
ak

e-
up

 C
al

l O
ve

rh
ea

d
(in

 m
s)

R
ec

on
fig

ur
at

io
n

C
ou

nt

Utilization and Speedup

2020

RES improves utilization by 2.3x compared
to ACS and 2.7x compared to NS

Provides considerable performance
benefits despite the PR overheads.

A
vg

 U
til

iz
at

io
n

of
 a

n
FP

G
A

S
pe

ed
-u

p
(%

)

21

Case Study

GitHub: https://github.com/zuclfpl/zucl_fsp

The static system would be introduced in FSP workshop: ZUCL

Case Study

22

PRES:

SRES:

ACS:

CCS / NS:

PRES gets too
greedy while
SRES attempts
to be fair

22

Case Study Results

23

SRES (ms) PRES (ms) ACS (ms) CCS/NS (ms)

Mmult wait time 12 12 12 3

CRC32 wait time 4 4 4 3

E-dist wait time 7 7 7 6

Total Completion time 320 368 501 1221

- Similar wait time
- Performance improvement:

- 36 % (SRES vs ACS)
- 73.8 % (SRES vs CCS/NS)

23

Summary

- Concept of resource elasticity
- Cooperative scheduling for FPGAs
- First working resource elastic system

- Supporting tool flow: from HLS to Runtime system
- Performance gains in the range of 39 % to 64%

24

Conclusions

Key takeaways:

- Future OS / virtual machines for FPGAs need to consider spatial
domain

- Cooperative scheduling can be a good fit for FPGAs

Features of RES:

- Higher performance and utilization
- Scale performance with FPGA resources (using dynamic replication)
- Migration of accelerators
- Overcommitment of resources w.r.t. Quality of Service

25

LIVE MIGRATION FOR OPENCL
FPGA ACCELERATORS
ANUJ VAISHNAV CO-AUTHORS: K. D. PHAM, D. KOCH

SCHOOL OF COMPUTER SCIENCE
THE UNIVERSITY OF MANCHESTER

INTRODUCTION

• Migration of accelerators across nodes with zero downtime
• Fault tolerance

• Maintenance

• Resource Management

• Same idea as last paper
• Context switches between workgroups

• Resource Elasticity – Due to different resource availability

MIGRATION
• Usually requires saving state

• For CPU task

• Register state

• Memory state

• Etc.

• More difficult for FPGAs

• Migrate between OpenCL workgroups
• Consistency point

• Two methods – blocking, non-blocking.

MIGRATION (CONTD.)
• No Migration
• Run to completion

• Blocking

• Pause execution at the end of workgroup

• Transfer accelerator bitstream, input/output

• Restart execution

• Non-Blocking
• Transfer bitstream, input data while previous

work group is still in execution

• Restart next workgroup at target

• Transfer output from source and merge

ARCHITECTURE

• Master/Slave approach

• Master runs host code and resource allocation

• Slaves execute accelerators, heartbeat to master

• Enables load balancing

CONCLUSION

• Live Migration of OpenCL accelerators
• Asynchronous

• Transparent

• Negligible Overhead

• Enables
• Fault tolerance

• Load balancing

• Maintenance

DISCUSSION
• Efficiently utilize compute devices in HPC nodes
• Including CPU(s), GPU(s), FPGA(s)

• Co-schedule job across compute devices by partitioning – Stencil/Mesh applications
• What ratios?

• Hide communication – How?

• Let multiple jobs share the same node

• Currently have same OpenCL kernel running across all devices
• As a first example split vector addition across all devices (in progress)

• Can we build a virtual OpenCL device combining CPU, GPU(s), FPGA(s)
• Work group granularity

• Depending on application(s) – Partition kernel over multiple devices, or share resources
with other jobs

• GPUDirect (maybe FPGADirect) for intra-node/inter-node communication

• No CPU overhead (almost)

