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FPGA Deployment

- Cloud Providers: Amazon, Baidu, IBM, Alibaba, Huawei, Nimbix...
- Microsoft: Behind the scene deployment in data centers across 

15 countries and 5 continents* 
- Backbone for ExaScale computing projects (e.g. ECOSCALE,  

ExaNeSt, EuroEXA)
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*A. M. Caulfield et al., "A cloud-scale acceleration architecture," 49th Annual IEEE/ACM International 
Symposium on Microarchitecture (MICRO), Taipei, 2016, pp. 1-13.



Current FPGA world
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- Run-to-completion model => No Context switch (in most cases)
- No migration of workload without restarting or too many constraints
- Single user application per FPGA (in most cases)
- No scalability of performance with more FPGA resources without 

re-design
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Saving & Restoring 
state is costly



Resource Elasticity

Definition: Ability of kernels to grow and shrink 
its resource footprint transparently from the 
user.

Grow and shrink how?

- Module replication
- Module replacement
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Potentially super-linear 
performance  gain
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Resource Elasticity Trade-offs

- Multiple instances vs Different sized module
- Run to completion vs Changing module layout
- Collocated change vs Distributed change

Deal with 
fragmentation A A B
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Is it worth it, given 
the overhead?



Context Switching

- Preemptive scheduling 
techniques:

- Configuration read back
- Scan chains

- Cooperative scheduling 
approach: Only perform 
context switch at consistency 
points
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Internal 
State



OpenCL

- Designed for heterogeneous systems
- Work-group is made up of work-items 

(lightweight threads)
- Inside work-group, synchronization 

primitives can be used
- No execution order or 

synchronization across work-groups
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Allows Context Switching: No 
read and write of internal state 

required

for (i = 0; i < 16; i++)
for (j = 0; j < 16; j++)

for (k = 0; k < 16; k++)



Base infrastructure

Main features:

- Multiple partial regions (also called 
slots) side by side

- Vivado HLS to generate OpenCL 
accelerators

- Placed & routed as relocatable 
accelerators

Slot: where modules are 
placed

Static region
(OS logic)

Perform context switch at 
the end of work-group (bunch 

of threads)

Flexibility of 
scheduling

Standard 
Interface
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Zynq UltraScale+ 
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Accelerator generation and execution

Host Execution

Kernel (.cl)

Bitstreams + 
Meta-data

HLS compilation

User 
Optimization

Host code 
(.cpp/.c)

Host binary
Runtime 
Resource 
Manager

FPGA Execution

User Input

API
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Scheduling algorithm

Generate 
Configurations

Rank Configurations

Make Changes

Schedule event: at the end of 
work-group / kernel arrival

Module layouts with replication 
and replacement

Ranking functions for 
optimization parameters based 

on performance gain and 
overheads

Partial reconfiguration and 
programming accelerators

(if beneficial)

Resource 
allocation

Resource 
binding
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Virtualization Architecture
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Hardware OS

Xilinx Drivers

Xilinx OpenCL Runtime

Application

Operating System

Virtualization 
Changes

Custom Hardware OS

Custom Drivers

RES OpenCL Runtime

App

Operating System

Application 
Specific

Generic

Standard OpenCL Flow
(Xilinx SDAccel) Our OpenCL Flow Main 

Virtualization 
LayerApp App

FPGA Fabric FPGA Fabric



Time multiplexing
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Scheduler PR Manager Data ManagerFPGA

Waiting Queue

Metadata

Resource Manager

Reconfigure

Program
Kernel

Work-group 
completion

When we run out of space: Swap kernels to waiting queue

- Allows overcommitment of resources by time multiplexing



Space-Time Scheduling at Runtime
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Evaluation

Baseline scheduling policies:

- Run to Completion (NS)
- Conservative Cooperative Scheduling (CCS)
- Aggressive Cooperative Scheduling (ACS)

Resource elastic schedulers (RES):

- Standard RES (SRES) : Optimizes for fairness + utilization
- Performance RES (PRES) : Optimizes for performance
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Do not look into the future.

Using the same context 
switching mechanism



Simulation Results
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Completion and Wait Time Results
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PRES can achieve performance benefit 
between 39% to 64%

Similar wait times unless module tends to 
take up the whole FPGA.
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Resource Elastic Scheduler Overhead 
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Scheduler wake up call overhead between 
12x to 100x

Higher partial reconfiguration calls but 
relatively similar to ACS
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Utilization and Speedup

2020

RES improves utilization by 2.3x compared 
to ACS and 2.7x compared to NS

Provides considerable performance 
benefits despite the PR overheads.
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Case Study

GitHub: https://github.com/zuclfpl/zucl_fsp

The static system would be introduced in FSP workshop: ZUCL



Case Study
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PRES:

SRES:

ACS:

CCS / NS:

PRES gets too 
greedy while 
SRES attempts 
to be fair
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Case Study Results

23

SRES (ms) PRES (ms) ACS (ms) CCS/NS (ms)

Mmult wait time 12 12 12 3

CRC32 wait time 4 4 4 3

E-dist wait time 7 7 7 6

Total Completion time 320 368 501 1221

- Similar wait time 
- Performance improvement:

- 36 % (SRES vs ACS)
- 73.8 % (SRES vs CCS/NS)
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Summary

- Concept of resource elasticity
- Cooperative scheduling for FPGAs
- First working resource elastic system

- Supporting tool flow: from HLS to Runtime system
- Performance gains in the range of 39 % to 64%
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Conclusions

Key takeaways:

- Future OS / virtual machines for FPGAs need to consider spatial 
domain

- Cooperative scheduling can be a good fit for FPGAs

Features of RES:

- Higher performance and utilization
- Scale performance with FPGA resources (using dynamic replication)
- Migration of accelerators
- Overcommitment of resources w.r.t. Quality of Service
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INTRODUCTION

• Migration of accelerators across nodes with zero downtime
• Fault tolerance

• Maintenance

• Resource Management

• Same idea as last paper 
• Context switches between workgroups

• Resource Elasticity – Due to different resource availability



MIGRATION
• Usually requires saving state

• For CPU task

• Register state

• Memory state

• Etc.

• More difficult for FPGAs

• Migrate between OpenCL workgroups
• Consistency point

• Two methods – blocking, non-blocking.



MIGRATION (CONTD.)
• No Migration
• Run to completion

• Blocking

• Pause execution at the end of workgroup

• Transfer accelerator bitstream, input/output

• Restart execution

• Non-Blocking
• Transfer bitstream, input data while previous 

work group is still in execution

• Restart next workgroup at target

• Transfer output from source and merge



ARCHITECTURE

• Master/Slave approach

• Master runs host code and resource allocation

• Slaves execute accelerators, heartbeat to master

• Enables load balancing



CONCLUSION

• Live Migration of OpenCL accelerators
• Asynchronous

• Transparent

• Negligible Overhead

• Enables
• Fault tolerance

• Load balancing

• Maintenance



DISCUSSION
• Efficiently utilize compute devices in HPC nodes
• Including CPU(s), GPU(s), FPGA(s)

• Co-schedule job across compute devices by partitioning – Stencil/Mesh applications
• What ratios?

• Hide communication – How?

• Let multiple jobs share the same node

• Currently have same OpenCL kernel running across all devices
• As a first example split vector addition across all devices (in progress)

• Can we build a virtual OpenCL device combining CPU, GPU(s), FPGA(s)
• Work group granularity

• Depending on application(s) – Partition kernel over multiple devices, or share resources 
with other jobs

• GPUDirect (maybe FPGADirect) for intra-node/inter-node communication

• No CPU overhead (almost)


