
CoMerge

Toward Efficient Data Placement

in Shared Heterogeneous

Memory Systems

Thaleia Dimitra Doudali

Ada Gavrilovska

MEMSYS 17

Motivation
Performance slowdown in heterogeneous
memory systems.

 2

DRAM

Application

data objects➡

DRAM

cost ↑

Non Volatile Memory

➡ How to reduce
the slowdown?

Heterogenous Memory Subsystem

higher access latency ⇒
performance slowdown
from ‘all-data-in-DRAM’

MEMSYS 17

Existing Solutions
Data tiering that maximizes DRAM accesses.

 3

DRAM

Application

data objects➡

DRAMNon Volatile Memory
Heterogenous Memory Subsystem

Think about
which objects
get allocated

in DRAM.

➡ data objects
➡

Existing Solutions
1. X-Mem - Dulloor et al.
2. Dataplacer - Shen et al.
3. Valgrind extension - Peña, Balaji.more memory requests

with lower latency

MEMSYS 17

Problem Statement
Limited Utility of Existing Solutions in Shared Systems.

 4

DRAM

Application 1

data objects

Non Volatile Memory

➡ data objects

Application 2

➡
Shared Memory System

Which objects
should now be

in DRAM?

Do the partitioning techniques using existing solutions:
● Reduce the slowdown across all collocated applications?
● Maximize DRAM utilization?

⇒ NO

MEMSYS 17

Our Contributions
What do we need to do differently?

1. Sorting objects within one application:

co-benefit metric captures:
a. Exact contribution of a data object to overall

application runtime.
b. Overall application sensitivity to execution

over Non-Volatile Memory.

 5

2. Distributing DRAM across applications:
CoMerge memory sharing technique.

a. Mitigates slowdown across all collocated
applications.

b. Maximizes the DRAM usage.

DRAM

MEMSYS 17

Observations
What are we going to see next?

1. Not all applications are slowed down in the same degree

when accessing Non Volatile Memory.

2. Not all data objects of an application help reduce the

performance slowdown, when placed in DRAM.

 6

Polybench Benchmarks
● 30 simple algebraic kernels.
● Single-threaded.

CORAL Suite of mini-apps
● 3 HPC representative kernels.
● Multi-threaded. OpenMP.

Hardware Testbed

CPU

DRAM emulated
NVM

Emulate Non Volatile Memory for various
combinations of reduced bandwidth and

increased latency.
e.g. B 0.5 : L 2

0.5 times less bandwidth : 2 times more latency

MEMSYS 17

Overall Application Sensitivity
Do all applications get slowed down in the same
way when accessing Non Volatile Memory?

 7

None
Low

Medium

High

Applications show different levels of sensitivity to
execution over slower memory components.

Performance slowdown across Polybench/C, normalized to ‘all-data-in-DRAM’ execution.

MEMSYS 17

Data Object Sensitivity
Do all data objects help minimize the slowdown,
when allocated in DRAM?

 8

1 1

2 2
2

3 3 3

Observations

1. For non or low sensitive apps, doesn’t matter which object is in DRAM.

2. Different data objects can contribute equally to the application runtime.

3. There can be objects whose allocation in DRAM is the only way to mitigate
slowdown.

fixed NVM at B 0.2 : L 5

MEMSYS 17

Co-Benefit Metric
Can we capture the previous observations?

 9

Normalize
F

t(O)

S

Run
Time

Objects in
DRAM

F All

t(O) object O

S None

F = 1

B(O)

S = 0

 F = S/F

coB(O)

 S = 0

Scale

How much does a specific
object help reduce the

slowdown?

How can we make sure that
objects of higher sensitivity

kernels are getting prioritized?

e.g. B(O) = 0.9 coB(O) = 0.9 * low sensitivity = 0.9
coB(O) = 0.9 * high sensitivity = 3.9 ⇒

MEMSYS 17

DRAM Distribution
What are the goals of an efficient technique?

 10

1. Minimize overall runtime
slowdown across all applications.

Overall
Slowdown

All-in-DRAM

Runtime

Collocation

{ sharing

data tiering

2. Maximize the utilization of DRAM.

DRAM

Object 1

Object 3Object 2

unutilized

MEMSYS 17

Sharing DRAM
Sorting objects using co-benefit metric.

 11

jacobi-2d
Fair Merge

CoMerge

adi

DRAM

Fair

Fair CoMergeCoMerge

high
sensitivity

low
sensitivity

MEMSYS 17

Summary
More detailed analysis in the paper

 12

Partitioning &
existing solutions

xsbench clomp stream

Equal Split

xsbench clomp stream

Proportional Splitunused

7x 6xslowdown

Fair Merge CoMerge

2.7x 2.6xslowdown

unused

Co-Benefit metric allows CoMerge to achieve:
● Lower runtime across all collocated applications.
● Higher DRAM utilization.

Sharing &
co-benefit metric

