COMPILER-BASED MEMORY ALLOCATION FOR DRAM-HBM HYBRID MEMORY SYSTEM

Onkar Patil, Frank Mueller, Latchesar Ionkov, Michael Lang North Carolina State University, Los Alamos National Laboratory

TECHNOLOGY

- Hybrid Memory systems with High Bandwidth Memory(HBM) exist
 - Summit @ ORNL -> Volta GPUs with HBM2, NVlink
- Potential devices for future systems
 - AMD Vega GPU architecture
 - Intel's Stratix 10MX FPGA
- HBM device manufacturers
 - Samsung
 - Micron
 - Intel

SAMSUNG

HBM2

NCIER CARE

• SK Hynix

PROBLEM

- Language key words extensions or macros help in memory allocation, but...
 - Onus of utilizing the memory technologies optimally, falls on the skill and knowledge of the programmer
- Not every data structure and compute kernel benefits from the same memory

PROPOSED SOLUTION

- Use Static analysis from the compiler to automatically identify and classify critical data structures and kernels based on
 - Scope
 - Nesting (Nesting score)
 - Access Pattern(r, w, rw)
 - Proximity
 - Effective bandwidth ratios
- Perform source-to-source transformation to change the allocation and then recompile
 - Allocate memory using a single interface for all memory devices(SICM)

Fig. 1: Overarching Abstract Machine Model, Exascale Node Architecture

(a) Physical Address Partitioned(b) Multi-Level Cached Memory Sys-Memory Subsystem tem

Fig. 8: Memory Subsystem Layouts

ASSUMPTIONS

- Memory architecture consistent with the envisioned Exascale Node architecture
- Data Flow can exist in two ways
 - Partitioned address space
 - Cached Memory system
- NUMA access to all memory devices

Ang, James A., et al. "Abstract machine models and proxy architectures for exascale computing." Proceedings of the 1st International Workshop on Hardware-Software Co-Design for High Performance Computing. IEEE Press, 2014.

MEMORY DEVICE CHARACTERIZATION

- Run micro-benchmark once
 - Based on STREAM
 - Double loop timed
 - 512 MB workload
 - Averaged over 30 runs
- Identify NUMA devices with the underlying memory technology
 - Classification using K-means
 - Memory classes provided by user(HBM, DRAM, NVM)
 - Bandwidth and Latency numbers for different types of operations

at - s

HBM	DR	AM
Avg_BW	1521.722599	1273.181041
R_BW	1012.372162	991.869843
W_BW	2031.073037	1554.492239
RW_BW	294.457057	279.220723
Ran_BW	7.235049	8.159102
Lin_BW	53.822347	53.39672
Same_BW	273.052658	266.690019
Diff_BW	132.100891	130.594896
Avg_lat	2.9E-09	3.4E-09
R_lat	3.8E-09	3.9E-09
W_lat	0.00000002	2.9E-09
RW_lat	0.00000013	1.37E-08
Ran_lat	5.273E-07	4.675E-07
Lin_lat	7.09E-08	7.14E-08
Same_lat	0.00000014	1.43E-08
Diff_lat	2.89E-08	2.92E-08
BW - MB/s		
lat - s		

Global Scope: {Declared Vars} Nesting score, Access Pattern

STATIC ANALYSIS

Information Gathered

- Data Structures
 - Scope → global, function, loop, conditional
 - Memory operation \rightarrow r, w, r+w
 - Access Pattern → sequential, strided, linear, random
 - Aliasing \rightarrow pass by reference
 - Code Location \rightarrow place of declaration
 - Proximity → accessed in the same expression or scope

Global Scope: {Declared Vars} Nesting score, Access Pattern

STATIC ANALYSIS

Loops and Conditionals

- Code Location → Start and end of code, line & column nos.
- Nesting score → How nested is the loop/conditional? Function =1, Loops/conditionals = 2, 3, ...

PROXIMITY SCORE

- Metric for
 - Grouping data structures that are frequently accessed together
 - Indicating appropriate memory allocation
- Proximity_score(a,b) = $p(a,b)*LF^{lns}/CF^{cns}*\sum_{x = \{a,b\}}(os(x)*ps(x))$
 - p → proximity {Normalized to different expression BW}
 - LF \rightarrow loop factor {10}
 - **CF** \rightarrow conditional factor {2}
 - Ins \rightarrow loop nesting score {1...n}
 - **cns** \rightarrow conditional nesting score {1...n}
 - **os** \rightarrow operation score {Normalized to read-only BW}
 - $ps \rightarrow$ pattern score {Normalized to random access BW}

ARENA ALLOCATION

- Clusters of data structures
 - Proximity scores
 - Group them using Kmeans clustering algorithm
 - Allocate higher scored clusters on HBM

IMPLEMENTATION

- Microbenchmark characterization
- Clang obtains code locations and scope of all data structures and loops
- LLVM opt obtains SSA form and perform analysis
 - Obtain access patterns, memory operations, aliasing and nesting score for all data structures and loops
 - Make allocation decisions
- Shell script to make source-to-source transformations and re-compile

EXPERIMENTATION

- Test on Benchmarks(C, OpenMP, MPI)
 - LULESH
 - VPIC
 - SNAP
 - HPCC
 - KRIPKE
 - CLAMR
 - AMG2013
 - MCB
 - QMCPACK
 - CAM-SE
- Compare the framework with manual allocation for DRAM-HBM system

RELATED WORK

- Khaldi, Dounia, and Barbara Chapman. "Towards automatic HBM allocation using LLVM: a case study with knights landing." LLVM Compiler Infrastructure in HPC (LLVM-HPC), 2016 Third Workshop on the. IEEE, 2016.
 - BCDA analysis in LLVM
 - Uses hbw_malloc
- Wang, Haojie, et al. "Spindle: informed memory access monitoring." 2018 {USENIX} Annual Technical Conference ({USENIX}{ATC} 18). USENIX} Association}, 2018.
 - Creates a memory monitoring tool using LLVM
- Alvarez, Lluc, et al. "Runtime-Guided Management of Stacked DRAM Memories in Task Parallel Programs." Proceedings of the 2018 International Conference on Supercomputing. ACM, 2018.
 - Checks a directory if data is present before access and moves data accordingly

FUTURE WORK

- Finish the framework
 - Handling of complex variables
 - Implement the proximity score calculation
 - Source-to-source translation
- Evaluate on the benchmarks shortlisted
- Write up the paper

THANK YOU

Questions?

15