
COMPILER-BASED MEMORY
ALLOCATION FOR DRAM-
HBM HYBRID MEMORY
SYSTEM
Onkar Patil, Frank Mueller, Latchesar Ionkov, Michael Lang
North Carolina State University, Los Alamos National Laboratory

TECHNOLOGY

• Hybrid Memory systems with High Bandwidth
Memory(HBM) exist
• Summit @ ORNL -> Volta GPUs with HBM2, NV-

link
• Potential devices for future systems

• AMD Vega GPU architecture
• Intel’s Stratix 10MX FPGA

• HBM device manufacturers
• Samsung
• Micron
• Intel
• SK Hynix

PROBLEM

• Language key words extensions or macros
help in memory allocation, but…
• Onus of utilizing the memory technologies

optimally, falls on the skill and knowledge of the
programmer

• Not every data structure and compute kernel
benefits from the same memory

PROPOSED SOLUTION

• Use Static analysis from the compiler to automatically
identify and classify critical data structures and kernels
based on
• Scope
• Nesting(Nesting score)
• Access Pattern(r, w, rw)
• Proximity
• Effective bandwidth ratios

• Perform source-to-source transformation to change the
allocation and then recompile
• Allocate memory using a single interface for all memory devices(SICM)

ASSUMPTIONS

• Memory architecture consistent with the
envisioned Exascale Node architecture

• Data Flow can exist in two ways
• Partitioned address space
• Cached Memory system

• NUMA access to all memory devices
Ang, James A., et al. "Abstract machine models and proxy architectures for exascale
computing." Proceedings of the 1st International Workshop on Hardware-Software Co-
Design for High Performance Computing. IEEE Press, 2014.

MEMORY DEVICE
CHARACTERIZATION
• Run micro-benchmark once

• Based on STREAM
• Double loop timed
• 512 MB workload
• Averaged over 30 runs

• Identify NUMA devices with the
underlying memory technology
• Classification using K-means
• Memory classes provided by

user(HBM, DRAM, NVM)
• Bandwidth and Latency

numbers for different types of
operations

HBM DRAM
Avg_BW 1521.722599 1273.181041
R_BW 1012.372162 991.869843
W_BW 2031.073037 1554.492239
RW_BW 294.457057 279.220723
Ran_BW 7.235049 8.159102
Lin_BW 53.822347 53.39672
Same_BW 273.052658 266.690019
Diff_BW 132.100891 130.594896
Avg_lat 2.9E-09 3.4E-09
R_lat 3.8E-09 3.9E-09
W_lat 0.000000002 2.9E-09
RW_lat 0.000000013 1.37E-08
Ran_lat 5.273E-07 4.675E-07
Lin_lat 7.09E-08 7.14E-08
Same_lat 0.000000014 1.43E-08
Diff_lat 2.89E-08 2.92E-08

BW - MB/s
lat - s

STATIC ANALYSIS

• Information Gathered
• Data Structures

• Scope à global, function, loop,
conditional

• Memory operationà r, w, r+w
• Access Pattern à sequential, strided,

linear, random
• Aliasing à pass by reference
• Code Location à place of declaration
• Proximity à accessed in the same

expression or scope

STATIC ANALYSIS

• Loops and Conditionals
• Code Location à Start and end of

code, line & column nos.
• Nesting score à How nested is the

loop/conditional? Function =1,
Loops/conditionals = 2, 3, …

PROXIMITY SCORE

• Metric for
• Grouping data structures that are frequently accessed together
• Indicating appropriate memory allocation

• Proximity_score(a,b) = p(a,b)*LFlns/CFcns *∑ " = {%, '}(os(x)*ps(x))
• p à proximity {Normalized to different expression BW}
• LF à loop factor {10}
• CF à conditional factor {2}
• lns à loop nesting score {1…n}
• cns à conditional nesting score {1…n}
• os à operation score {Normalized to read-only BW}
• ps à pattern score {Normalized to random access BW}

ARENA ALLOCATION

• Clusters of data
structures
• Proximity scores
• Group them using K-

means clustering
algorithm

• Allocate higher
scored clusters on
HBM

int main(){
….
for(i=0;i<max,i++){

a[i] = b[i]*c[i] – d[i];
}

….
}

Arena
1:

a, b, c,
d, i

Arena
2:

Arena
3:

HBM

DRAM

NVRAM

IMPLEMENTATION

• Microbenchmark characterization
• Clang obtains code locations and scope of all data structures and

loops
• LLVM opt obtains SSA form and perform analysis

• Obtain access patterns, memory operations, aliasing and nesting score
for all data structures and loops

• Make allocation decisions
• Shell script to make source-to-source transformations and re-compile

EXPERIMENTATION

• Test on Benchmarks(C, OpenMP, MPI)
• LULESH
• VPIC
• SNAP
• HPCC
• KRIPKE
• CLAMR
• AMG2013
• MCB
• QMCPACK
• CAM-SE

• Compare the framework with manual allocation for DRAM-HBM system

RELATED WORK

• Khaldi, Dounia, and Barbara Chapman. "Towards automatic HBM allocation
using LLVM: a case study with knights landing." LLVM Compiler Infrastructure
in HPC (LLVM-HPC), 2016 Third Workshop on the. IEEE, 2016.
• BCDA analysis in LLVM
• Uses hbw_malloc

• Wang, Haojie, et al. "Spindle: informed memory access monitoring." 2018
{USENIX} Annual Technical Conference ({USENIX}{ATC} 18). USENIX}
Association}, 2018.
• Creates a memory monitoring tool using LLVM

• Alvarez, Lluc, et al. "Runtime-Guided Management of Stacked DRAM
Memories in Task Parallel Programs." Proceedings of the 2018 International
Conference on Supercomputing. ACM, 2018.
• Checks a directory if data is present before access and moves data accordingly

FUTURE WORK

• Finish the framework
• Handling of complex variables
• Implement the proximity score calculation
• Source-to-source translation

• Evaluate on the benchmarks shortlisted
• Write up the paper

THANK YOU
• Questions?

15

