
UCI
DREAM Lab

A QoS-driven Resource Allocation Framework based on
the Risk Incursion Function and its Incorporation

into a Middleware Structure & Mechanisms Supporting
Distributed Fault Tolerant Real-time Computing Applications

For presentation at the dissertation defense
December 6th, 2001

Juqiang Liu

Department of Electrical and Computer Engineering
University Of California, Irvine

jqliu@ece.uci.edu
http://dream.eng.uci.edu/jqliu

UCI
DREAM Lab

Outline

• Motivation

• The Time-triggered Message-triggered Object (TMO) scheme

– A real-time distributed software component structure

• The TMO Support Middleware (TMOSM) Architecture

– A middleware architecture supporting distributed RT computing on
COTS platforms

• The Risk Incursion Function (RIF) Scheme and Example Application

• The RIF-based Resource Allocation Framework

• Real-time Fault Tolerance Schemes Incorporated in the framework

– The Supervisor-based Network Surveillance(SNS) Scheme

– The Primary Shadow TMO Replication (PSTR) Scheme

– The Primary Passive TMO Replication (PPTR) Scheme

UCI
DREAM Lab

Motivation

• OO design approaches have become dominant in the development
of non-real-time business data processing software, however,
OO-structuring has had minimal impacts in real-time computer
system (RTCS) engineering.

• In spite of the steady decline of computer hardware cost in the
computer systems, allocation of computing resources is still a major
issue, especially in complex distributed, real-time computer systems.

• Few schemes have been proposed to address the resource allocation
problems in an integrated fashion, from the application requirements
to the scheduling of various computation resources, such as processors,
communication bandwidth and I/O devices.

• The analysis of the fault detection latency bound and recovery bound of
a real-time fault tolerance scheme, which is a rare practice until recently,
is of critical importance in safety-critical real-time computer systems.

UCI
DREAM Lab

Background:
Time-triggered Message-triggered Object (TMO)

And TMO Support Middleware (TMOSM)

UCI
DREAM Lab

Time-triggered Message-triggered Objects
(TMO) Structuring Scheme

• Time-triggered (TT-) or spontaneous
methods (SpM’s):

– Clearly separated from the
conventional service methods (SvM’s)
triggered by messages from clients

• Time-window imposed on each output
action and method completion

• Connections to the network
environment as possible data
members:

– Programmable data-field-
channels

– TMO access capabilities
(possibly remote TMO's)

• Basic concurrency constraint
(BCC):

– SpM executions not disturbed
by SvM executions.

– Eases design-time guarantee
of timely services of TMO’s

UCI
DREAM Lab

TMO Network Structured Application
Execution Facilities

Real-Time Distributed Computing Applications

H/W

Kernel (e.g. NT kernel)

NT service TMOSM

FT support

Middleware

H/W

Kernel (e.g. NT kernel)

H/W

Kernel (e.g. NT kernel)

NT service TMOSM

FT support

Middleware

NT service TMOSM

FT support

Middleware

No concerns with

- Processes &
Threads

- Object locations
(except in
avoiding
overloaded
nodes)

UCI
DREAM Lab

TMOSM Thread Structure

COTS Platform

SvM Thr. SpM Thr.

Timer interrupt

Communication Network

Message
Activate thread

Application
thread

Middleware
thread

Logical connections Remote TMO Calls, RMMC

TMOSM

other
processes

other
processes

TMO TMO TMO TMO

RT process

VLIIT
MMCT

WTST

VMST

Virtual
middleware
thread

LIIT
LIIT

UCI
DREAM Lab

• WTST (Watchdog Timer & Scheduler Thread): Master Micro-Thread
– Manages the scheduling / activation of all other threads in TMOSM and

checks if there are deadline violations

• MMCT (Middleware-to-Middleware Communication Thread)
– Distributes messages coming through the communication network to their

destination threads

• VLIIT (Virtual Local I/O Interface Thread)
– A virtual thread Managing local I/O activities such as serial character I/O

and disk I/O

• VMST (Virtual Main System Thread)
– A virtual thread representing all application and utility threads including:

• SpM threads
• SvM threads
• Utility threads

TMOSM -- Thread Structure (cont.)

UCI
DREAM Lab

WTST

VMST

MMCT

VMST 1

Activate
Suspend

Waken up by timer

t

Suspend itself

VLIIT

VMST 2

Timer Interrupt

Other OS threads

or
or

or

or

1 timeslice

SpM 1 SpM 1

TMOSM – The Time-slicing Scheme

UCI
DREAM Lab

SpMRvQ

WaitingSvMQ

ReadyApp
ThrQ

SpMInfoList

SvMInfoList

DeadlineQ

BCC list

WTST

MMCT Data flow handled
by MMCT.

Data flow handled
by WTST.

Handle

Activate thread

...

...

...

...

SvM1

List of
conflicting
SpMs

SpM Thr.

SystemThrQ

SpM Thr.

SvM Thr.

...

BlockedForMsgQ

MID,Time

Completion
deadline

Completion
deadline

Detect
LST
violation

TMBList

...

...

UtilityThrQ

BCC check

Idle Thr.......
...

Completed Thread

Communication Network

TMOSM – Internal Control Flow

UCI
DREAM Lab

STATUS_RUNNING
(activated)

STATUS_READY
(suspended)

STATUS_SUSPENDED
(suspended)

SuspendAppThread()

ReportSpMCompletion()
ReportSvMCompletion()

ActivateSvMThrInWaitingSvMQ ()

ActivateSpMsInRvQ ()

ResumeAppThread()
(WTST gives a time-slice)

(WTST terminates the
time-slice given earlier)

(Ready but waiting for a
time-slice from WTST)

STATUS_BLOCKED
(suspended)

BlockingSR()
BlockmsgGetResultofNonBlockmsgSRQ()

ActivateWaitForMsgMethod()(called by MMCT)

STATUS_SUICIDE
(Terminated)

AppThr_Basic_Exception_H
andler()*

Basic_Exception_Handler()

Basic_Exception_H
andler()

(called by W
TST)

TMOSM – Thread State Transition Diagram

UCI
DREAM Lab

LIIT1 LIIT2 LIITn

Fixed Pool of threads: use time slices allocated to VLIIT

MET1

NRT1 NRT2

Dynamic pool of NT threads:
use time slices allocated to NT

VLIIT
scheduler

IO Exec
Request Queue

IO Exec
Request

Dispatcher

Deadline
Violation
Detector

⊗
WTST

⊗
VMST

TMO
scheduled
commands

NT
scheduled
commands

VLIIT

use_NRT

use_LIIT

LIIT control
Table

MSI gateway

TMOSM time domain

Time-slices released by TMOSM
…

Released & deactiva
ted

Assigned & Activa
ted

UCI
DREAM Lab

• Windows NT’s features needed by TMOSM
– Multi-tasking support

– High-resolution timer interrupt
• Waitable Timer construct: Periodic interrupt signal at one millisecond intervals)

– Top-priority real-time process/thread support
• TMOSM process is the highest priority-level process

(REALTIME_PRIORITY_CLASS)
• WTST is the highest priority-level thread (THREAD_PRIORITY_TIME_CRITICAL)
• All other threads in TMOSM are the second highest priority-level threads

(THREAD_PRIORITY_HIGHEST)

• Performance of the prototype implementation

– Supports the time-window for activating a method as small as 10ms

– Supports the execution deadline as short as 20ms

TMOSM/NT:
A prototype implementation of TMOSM on Windows NT

UCI
DREAM Lab

SpM
BaseClass

SvM
BaseClass

ODSS
BaseClass

EAC
Facilities

RT I/O Func
Clock Func
Mem Func

TMO
BaseClass

TMO-Based
ApplicationSpM

Class
SvM
Class

ODSS
Class

EAC
Facilities

TMO
BaseClass

TMO Support Library (TMOSL)

Selected OS ServicesOperating System

TMO Support Middleware (TMOSM)

AIT WTST MMCT VLIIT VMST

MCBClass SystemQClass

CommClass

UDPInterfaceClass

MiddlewareStateClass

QueueClass

ClockServiceClass

TNCMClass

MemoryProxy CTMOwinsock

OS Services

Middleware Service Interface (MSI) Function

Winsock APIs Thread APIs

RMMCsupp
ort

UCI
DREAM Lab

TMOSM

ORB ORB

Socket Comm CORBA ORB

Unprotected
Network

Protected
Network

Unprotected
Network

Protected
Network

Unprotected
Network

Protected
Network

DCOMDCOM

DCOM

Also, NT --> WinCE

UCI
DREAM Lab

Group of functions
of

IO Management

ODSS
Class

BasicSvM
Class

BasicSpM
Class

Basic EAC
Class

Basic ODSS
Class

TMO Class

SvM
Class

SpM
Class

EAC
Class

Use an object
Inherit an object

..

Basic DFC
Class

MiddlewareService Call

TMOSM

.

.
Group of functions
of Real-time Clock

Management

.

.

Basic TMO
Class

TMO
Class

Application TMO1

Application TMO2

TMO support library (TMOSL):

User friendly API library for
C++ TMO programmers

TMOSM Support Library

UCI
DREAM Lab

QoS-driven Resource Allocation Framework
based on

the RIF (Risk Incursion Function) Scheme

UCI
DREAM Lab

• In spite of the continuing decline of computer hardware costs,
allocation of computer resources is still a major issue in designing
complex, real-time, computer systems.

- In complex, real-time computer systems, the rate of component failures
is not negligible.

- In such systems, tight resource conditions can rise due to the failure
of computing components.

- Moreover, the real-time recovery of the computation disturbed by the
faulty components also involves resource allocation actions.

• Many established resource allocation approaches have a fundamental
limitation that they are based on the use of excessively simplistic
characterizations of computation-segments competing for use of the
execution resources.

- Assigning fixed-priorities is still the most popular scheme in current
practice.

Introduction

UCI
DREAM Lab

• assigning fixed priority is a very primitive and crude way of expressing
the relative importance or urgency among different tasks or processes.

- Fixed priority assignment introduces complexity for the distributed RT
system design. The designer of distributed, RT systems should
concentrate on high-level concepts such as computing objects, instead of
considering details such as “process”, “thread”, “priority” or
communication protocols.

- Fixed priorities are the attributes that can be easily observed by
the low-level node execution engine.

- If there are timing requirements inherent in the target applications,
it should be expressed in the simplest, easily analyzable form in the
high-level system design.

Introduction

UCI
DREAM Lab

…

System output 1

System output 2

System output N

• Ultimately, execution resource requirements come from the needs of
producing acceptable-quality outputs of application functions.

• The most meaningful purpose of any resource allocation is meeting the
application requirements with the best quality of execution results and
with minimal use of execution resources.

• An real-time computing system is required to take every service action
accurately not only in “time dimension” but also in “logical dimension”.

• System design engineers must understand not only the QoS requirements
(i.e., output accuracy, fault tolerance), but also the impacts of QoS losses,
i.e., inaccurate outputs on the overall application success.

A distributed
real-time
system

Introduction

UCI
DREAM Lab

Risks - Damaging impacts of QoS losses to the
application mission

RIF (a.k.a. Benefit Loss Function)

:= relation (Loss in timed value accuracy of each
output action, Potential application damage)

:= relation (QoS loss, Risk)

A distributed,
real-time system

System Output 1

System Output 2

Actuator 1

Actuator 2

RIF 1

RIF 2

the Risk Incursion Function (RIF)

UCI
DREAM Lab

System Output 1

System Output 2

Actuator 1

Actuator 2

RIF 1

RIF 2

Computing node 1

Computing node 2

RIPF 1RIPF 2

System-level RIF and derived RIF (= RIPF)

Derived RIF = RIPF (Risk Incursion Potential Function)

= relation (Accuracy loss in intermediate output,

Potential risk)

Intermediate
Output 1

Intermediate
Output 2

Risk Incursion Potential Function (RIPF)

UCI
DREAM Lab

Actuator 1

Actuator 2

RIF 1

RIF 2

RIPF 21
RIPF 11

O1 O2 O3

O4

O5

O6

RIPF 13RIPF 12

RIPF 22

RIPF 23

Risk Incursion Potential Function (RIPF)

UCI
DREAM Lab

RIPF 1RIPF 2

O11 O12 O13

O11

O12

O13

RIPF 12RIPF 11

RIPF 22

RIPF 21

Actuator 1

Actuator 2

RIF 1

RIF 2

OS & Support Middleware

RIPF-based Resource Allocators

Risk Incursion Potential Function (RIPF)

UCI
DREAM Lab

Application
(one TMO)

…

System output 1

System output 2

RIF 1

RIF 2

…

System output 1

System output 3

RIF 1

RIF 3

TMO1 TMO2

TMO3

RIPF11 RIPF12

RIPF32

…

RIPF11

RIPF12

RIPF32

SvM1

SpM2

SpM1 SvM1

SpM1 RIF 1

RIF 3

The procedure of TMO-based application development

The whole
application
started as
one TMO

Then the
TMO is divided
as multiple TMO,
At the same time,
the RIPFs are
derived from
the RIFs

…

Final, the
application is
described as
a TMO network
(basic scheduling
unit is SxM
supported by
a thread)

System output 2
RIF 2

RIPF31

RIF 2

RIPF21

RIPF21RIPF31

RIPF111

RIPF121

UCI
DREAM Lab

RIF (RIPF) examples

Deadline Deadline

Risk Risk

Risk

Type I: Hard Deadline Type II: Soft Deadline

Type III: Soft deadline
followed by a hard deadline

Convex function
(Polynomial function,
i.e., ax3 + bx2 + cx + d)

Output action time

Concave function
(I.e, ax + b or sqrt(x) + c)

Serious level Serious level

Serious level

soft
deadline

hard
deadline

Earliest possible
output time

Output action time

Output action timeEarliest possible
output time

Earliest possible
output time

UCI
DREAM Lab

Case Study:

CAMIN
(Coordinated Anti-
Missile Interceptor
Network)
Theater

Defense Target in Sea
(Command Ship)

Defense Target in Land
(Command Post)

RV’s

In
te

rc
ep

t a
lti

tu
de

In
te

rc
ep

t a
lti

tu
de

Alien

: In safe area

UCI
DREAM Lab

SpM

SvM

SpM

SvM

Alien Alien
• • •
SvM

SpM

• • •

• • •
SvM

SpM

• • •

SpM

SvM

SpM

SvM

SpM

SvM

FOT

RDQ IPDS

SpM

SvM

FOT

RDQ IPDS

Step 2 Step 3

UCI
DREAM Lab

AlienFOT

IPDS

RDQ

FOT

IPDS

RDQ

Control Computer System
Design for use in Sea

Control Computer System
Design for use in Land

Real-Time Simulation

CAMIN as a network of TMO’s

• Defense command-control system
• 9 TMO’s; 2 TMO’s made fault-tolerant
• Runs on LAN of 3+ PC’s
• 25, 000 lines of C++ code

• Non-stop effective defense in the
presence of

- application software faults
- processor faults
- communication link (involves both

software and hardware) faults
- interconnection network (involves

both software and hardware) faults

UCI
DREAM Lab

Alien Theater

Alien System Output 1:
Alien.SysOut1:

Theater System Output 1:
Theater.SysOut1

Alien.SysOut1: Send reentry vehicle (missile) and NTFOs (non-threatening flying object)
to the theater.

Theater.SysOut1: Send information about the defense targets to the alien;
Send current statuses of missiles and commercial airplanes leaving
from the theater to the alien;

Case Study: CAMIN

UCI
DREAM Lab

Alien

Theater

Alien.SysOut1

Theater.SysOut1 Theater (TH)

Command
Post
(CP)

Command
Ship
(CS)

CP
SysOut2

TH
SysOut3

CP
SysOut1 CS

SysOut1

CP
SysOut3

TH
SysOut4

TH
SysOut5

TH.SysOut2: Send radar spot check and
scan check data to CP.

TH.SysOut3: Send radar spot check and
scan check data to CS.

TH.SysOut4: Send the status of the
interceptors and launchers to CP.

TH.SysOut5: Send the status of the
interceptors and launchers to CS.

CP.SysOut1: Send intercept request
to TH.

CP.SysOut2: Send radar spot check
plan to TH.

CP.SysOut3: Send data on status of
suspicious items to CS.

CS.SysOut1: Send intercept request
to TH.

CS.SysOut2: Send radar spot check
plan to TH.

CS
SysOut2TH

SysOut2

UCI
DREAM Lab

D
Deadline

Risk

CP.SysOut1
RIF_CP1:

y = 0 if x ≤ D
or
400 if x > D

CP.SysOut3
RIF_CP3:

y = 0 if x ≤ D1
5(x – D1) if D1 < x ≤ D2
200 if x > D2

Soft
Deadline

Risk

D
Deadline

Risk

CP.SysOut2
RIF_CP2:

y = 0 if x ≤ D
x – D if D < x ≤ D + 50
50 if x > D + 50

Output action time

Hard
Deadline

D1 D2

Output action time Earliest possible
output time

Earliest possible
output time

Earliest possible
output time

Output action time

UCI
DREAM Lab

Constraints for the deadline of CP.SysOut1

60000

2000

1. Spatial Constraint

Time Interval 1 – Time Interval 2

Time Interval 1 =
(60000 – 2000) / Max. Speed of RV

Time Interval 2 =
Distance 1 / Min. Speed of Launcher

Distance 1

(0, 60000, 60000)

(0, 60000, 2000)

(11000, 20000, 0)

UCI
DREAM Lab

Constraints for the deadline of CP.SysOut1

2. Temporal Constraint t0: Radar detection data arrives

t1: Interception plan is sent out

t2: Hit or miss the target

Hitting range

t0: CP receives the radar data and starts
Building the interception plan.

t1: CP sends out the interception plan. The position
Of the missile in t1 is extrapolated from the data of t0.
While the t1 – t0 becomes bigger, the accuracy of the
extrapolation becomes worse.

t2: If the missile is in the hitting range of the interceptor,
the interception is successful. The success rate
depends on the accuracy of the extrapolation at t1.

UCI
DREAM Lab

Theater
CS

Command Post (CP)

RDQ

FOT

IPDS

TH
SysOut2

TH
SysOut4

RIF_CP1

RIF_CP3
CP
RIPF_FOT3

CP
RIPF_RDQ

CP
RIPF_FOT4

CP
RIPF_IPDS

CP
RIPF_FOT1

CP
RIPF_FOT2RIF_CP2

UCI
DREAM Lab

RDQ FOT IPDS
RIPF_RDQ RIPF_FOT1 RIPF_IPDS

Command PostMax
Comm.
Delay

Max
Comm.
Delay

TH.
SysOut2 RIF_CP1

TH.
SysOut4RIF_CP3RIF_CP2

Deadline

Risk

CP.SysOut1: RIF
y = 0 if x <= Deadline

or
100 if x > Deadline

Compl. time

• The derivation of RIPF from RIF is based on the worst case
execution time (WCET) analysis and the importance of each task.

• Let assume the maximum inter-TMO (intra-node) comm. delay
is 5ms, inter-node comm. delay is 10ms. Let also assume
RDQ, FOT and IPDS are running in the same node.

• In this design example, suppose we conclude that the deadline
of CP.SysOut1 should be 200ms, and CP.SysOut2 and CP.SysOut3
should be 100ms. After analyzing the WCETs of RDQ, FOT and
IPDS, we allocate this 200ms as follows:

RDQ (25ms) FOT (50ms) IPDS (90ms)

• Since RDQ and FOT are related to all of the three
system outputs, while IPDS is related with only
system output 1, we set the threshold of deadline
violation as follows:

RDQ (80), FOT(80), IPDS (40)

RIPF_FOT2

UCI
DREAM Lab

Deadline

Risk

CP.RIPF_RDQ

y = 0 if x <= 25ms
or
80 if x > 25ms

Deadline

Risk

CP.RIPF_RDQ

y = 0 if x <= 90ms
or
40 if x > 90ms

Deadline

Risk

CP.RIPF_FOT1

y = 0 if x <= 50ms
or
80 if x > 50ms

RDQ FOT IPDS
RIPF_RDQ RIPF_FOT1 RIPF_IPDS

Command PostMax
Comm.
Delay

Max
Comm.
Delay

TH.
SysOut2

TH.
SysOut4

Compl. time Compl. time Compl. time

5ms 5ms 5ms 10ms10ms

10ms

5msRIPF_FOT2

RIF_CP1

RIF_CP2 RIF_CP3

UCI
DREAM Lab

SpM1

SvM1
RDQ

SpM1

SvM1
FOT

SpM1

SvM2
IPDS

SvM1

TH.SysOut2

TH.SysOut4

RIF_CP1

Deadline

Risk

Example RIPF
. Suppose max inter-SxM comm
(through ODSS) delay is 1ms

After WECT analysis, we get:
Dealines and risk for each SxM:

RDQ.SvM1 5ms 40
RDQ.SpM1 19ms 40

FOT.SvM1 10ms 40
FOT.SpM1 39ms 40

IPDS.SvM1 10ms 10
IPDS.SvM2 15ms 10
IPDS.SpM1 79ms 20

1ms

1ms

1ms

RIF_CP2
RIF_CP3

UCI
DREAM Lab

RIPF-driven CPU scheduling

Current Time

Risk

Execution Completion Time

RIPF 1

RIPF 2

RIPF 3

Theorem 1: The optimal (lowest-total-risk) scheduling algorithm based
on the proposed RIPF set is NP-hard

The optimal algorithm is NP-hard

UCI
DREAM Lab

RIPF-driven CPU scheduling

Current Time

Risk

Execution completion Time

RIPF 1

RIPF 2

RIPF 3

Theorem 1: Finding the optimal (lowest-total-risk) scheduling algorithm based on the proposed
RIPF set is NP-hard

Proof: 1. The inexact 0-1 knapsack problem is known to be NP-hard;

Maximize

subject to:

Where there are n objects each with size Ri and value vi, and R is the size of the knapsack.
Both Ri and Vi are real number.

2. The above problem is equal to a special case of the problem 1, which is:
F(x) = 0, if x < Ri or

Vi, if x > Ri
3. Therefore, the complexity of the problem 1 is NP-hard.

∑
=

<
n

i

i RR
1

∑ =

n

i
iv

1

Resource allocation problem 1

UCI
DREAM Lab

RIPF-driven CPU scheduling

The original problem (NP-hard) –
Optimal solution based on the original RIPF set

Approximation of the original problem
(polynomial time, sub-optimal solution)

Sub-optimal solution
based the original RIPF set

Optimal solution
based the approximation of the

original RIPF set

Based on
the deadline only

Based on
the risk only

Based on both Alg. 1
LLF

Alg. 3
RIPF

Alg. 2
Shifted-RIPF

Alg. 5
Linear- RIPF

Alg. 4
RIPF/Laxity

UCI
DREAM Lab

RIPF-driven CPU scheduling

Alg. 2 –
Shifted-RIPF

O(nlgn)

Alg. 1- LLF
O(nlgn) - Least laxity First

- Move all RIPF ‘s deadline to 0.
- Compare the integration of the
RIPF within current timeslice, schedule
the highest one. If there are more than
one highest, pick one randomly.

Sub-optimal solution
Based the original RIPF Set

Based on
the deadline only

Based on
the urgency only

Based on both
Alg. 1
LLF

Alg. 2
Shifted –RIPF

Alg. 3
RIPF

Risk

Compl. Time

RIPF 1

RIPF 2

RIPF 3

The integration
Of an RIPF within

One timeslice

Alg. 4
RIPF/Laxity

UCI
DREAM Lab

RIPF-driven CPU scheduling

Alg. 4 -RIPF/Laxity
O(nlgn)

- Run alg. 1 first, if zero risk arrangement
is found, use it and return; Otherwise
go to next step;

- Calculate the integrations of RIPFs
within the next N timeslice (vision
window), then divide it by Laxity.
Schedule the one with the highest value.

Sub-optimal solution
Based the original RIPF Set

Based on
the deadline only

Based on
the urgency only

Based on both
Alg. 1
LLF

Alg. 2
Shifted –RIPF

Alg. 3
RIPF

Alg. 3 – RIPF
O(nlgn)

- Run alg. 1 first, if zero risk arrangement
is found, use it and return; Otherwise
go to next step;

- Calculate the integrations of RIPFs
within the next N timeslice (vision
window). Schedule the one with
the highest value.

Current Time

Risk

Completion Time

RIPF 1

RIPF 2

RIPF 3

Vision Window

Alg. 4
RIPF/Laxity

UCI
DREAM Lab

RIPF-driven CPU scheduling

Optimal solution
Based the approximation of the

original RIPF Set

Alg. 4
Linear- RIPF

Risk

Compl. Time

RIPF 1

RIPF 2

Mathematical Approximation of the original
RIPF with a function that:

- monotonically increasing (f’(x) >0);
- continuous.

Risk

Compl. Time

Approx. RIPF 1

Approx. RIPF 2

Risk

Compl. Time

RIPF 3

Approx. RIPF 3

UCI
DREAM Lab

RIPF-driven CPU scheduling

Optimal solution
Based the approximation of the

original RIPF Set

Algorithm

Mathematical Approximation of the orignal RIPF
with a function that:

- monotonically increasing (f’(x) >0);
- continuous.

Risk

Execution Completion TimeCurrent Time

RIPF 1

RIPF 2
RIPF 3

RIPF 2’

RIPF 1’

- Compare the current value of the RIPF, pick the highest one to schedule;
- If more than one RIPF’s have the highest value, compare the first derivative

RIPF’, and pick the highest one.

UCI
DREAM Lab

RIPF-driven CPU scheduling

Optimal solution
Based the approximation of the

original RIPF Set

Alg. 4
Linear RIPF

O(nlgn) - online
O(n2) - offline

Mathematical Approximation of the original RIPF
with a function that:

- monotonically increasing (f’(x) >0);
- continuous.

Risk

Compl. Time
Current Time

Use linear approximation for the original RIPF’s
- Pick a set of equally-distanced dots from the RIPF functions
- Find a linear function which go through dot0 (0,0) and the sum of the

distances from all the dots to this linear function are the minimum.









−+−∑

=

n

ji

jiji yyxxMIN
1,

22)()(

(xi, yi)

(xj, yj)

Subject to: yj = a xj and (yj - yi)/(xj -xi) = -1/a

Y = aX

dot 0 (0,0)

UCI
DREAM Lab

The implementation of the RIPF-driven CPU scheduling

• Since the derived RIPF set also incorporates deadline information for
each SpM and SvM, the RIPF-driven resource schedulers can schedule
various resources at least as efficiently as the deadline-driven resource
schedulers do.

• Algorithm 3 mentioned previously has been implemented and incorporated
into the current version of TMOSM. The performance of the EDF and the
RIPF schedulers have been compared using the CAMIN application.

• Our analysis and experiments show that:
– If the deadlines of all tasks can be met, the EDF and RIPF schedulers

perform as efficiently;
– In the case where not all deadlines can be met under EDF, RIPF

scheduler can do a better job by considering the potential risk values
together with the deadline information in the RIPFs, which means less
important tasks are sacrificed first.

UCI
DREAM Lab

… …Application
TMO-based, distributed,
real-time, fault-tolerant applications

TMO Programming Language Approximation (TMOSL)

RIPF-driven Midterm Resource Allocation (Reconfiguration)

Programming
Interface

PSTR

SNS

SNS

VMST (RIPF-based
CPU resource scheduler)

MMCT (RIPF-based
comm. resource scheduler)

VLIIT (RIPF-based
I/O resource scheduler)

Windows 2000, NT, CE, or specialized RTOS

Socket, COM CORBA, TTP

QoS support

Distributed
Computing

Support

OS

WTST

…
PPTR

FT
support

RIPF-driven Short-term
Resource Allocation

Unintelligent maintenance of
virtual machine (sub-millisec
level resource allocation)

Deadline
Handling

A QoS-driven Resource Allocation Framework based on RIF

UCI
DREAM Lab

- Two considerations about reconfiguration decision
• Current maximum risk values returned by the RIPF-driven resource allocators
• Current node work-load

- Maximum risk value
• If the maximum risk value returned by one RIPF-driven resource allocator is more

than zero, it means that some QoS guarantees might not be met; e.g., if the maximum
risk value returned by the CPU scheduler is more than zero, some deadlines might be
violated; If it is from the communication bandwidth scheduler, some communication
bandwidth requirements might not be able to satisfied.

- Node work-load
TMO work-load = ∑(SpM-GCT/ SpM-Interval) + ∑(SvM-GCT / SvM-MIR)

GCT = Guaranteed Completion Time
MIR = Maximum Invocation Rate

Similarly, a node’s work-load:
Node work-load = ∑(TMO work-load)

RIPF-driven Midterm Resource Allocation
(Reconfiguration)

UCI
DREAM Lab

- The reasons for system reconfiguration
• Case 1: Node crash occurs
• Case 2: TMO crash occurs
• Case 3: In a certain computing node, if the number of times that the maximum risk value

appears to be positive is bigger than a threshold with a certain period, The TNCM might
consider move some tasks from this node to another node.

- Case 1: Node crash occurs
• TNCM examines the types of all TMOs hosted in the crashed node. The type of a TMO

may be PSTR station, PPTR station, or Simplex.
• Simplex TMOs should be moved immediately to other healthy computing node(s). Then

the crashed node should be repaired and resurrected. All PSTR and PPTR TMOs hosted
in this node may be restarted as the shadow station after the node is resurrected. If the
resurrection fails, The PSTR and PPTR TMOs hosted in this node may be moved to other
healthy node(s).

• The order of moving TMO and the selecting of destination node(s) are based on the risk
value incurred from the TMO movement.

• The order of moving TMOs
Examine the risk value incurred after the completion of the moving, based on
the estimated moving time. The TMO with the highest risk value incursion may
be moved first.

• The selection of a destination node
The maximum risk value of the node should be zero within a certain period;
The node’s work-load should be lower than a threshold.

RIPF-driven Midterm Resource Allocation
(Reconfiguration)

UCI
DREAM Lab

Case 1: Node crash occurs: TNCM Flowchart

Node crash report from
he SNS subsystem

Identify all Simplex TMOs
hosted in the crashed node

Determine the order of
moving and the order of

destination node list

Move all Simplex TMOs
to their destination node(s)

Repair and resurrect
the crashed node

Resurrection succeeds Resurrection fails

Restart all PSTR and PPTR
TMOs as shadow station

Prepare to move all PSTR
and PPTR TMOs to

other healthy node(s)

Determine the order of
moving and the order of

destination node list

Move all PSTR and PPTR
TMOs to their

destination node(s)

RIPF-driven Midterm Resource Allocation
(Reconfiguration)

UCI
DREAM Lab

The Real-time Fault Tolerance Schemes
Incorporated into

the RIF-based Resource Allocation Framework

UCI
DREAM Lab

The Supervisor-based
Network Surveillance (SNS) Scheme

UCI
DREAM Lab

The SNS scheme

The Supervisor-base Network Surveillance (SNS) Scheme
• Network Surveillance (NS), which is basically a (partially or fully)

decentralized mode of detecting faulty and repaired status of distributed
computing components, is a major part of real-time fault-tolerant
distributed computing.

• There are only small number of NS schemes which yield to rigorous
quantitative analyses fault coverage, and the SNS scheme is one
of them.

• The SNS scheme is semi-centralized real-time NS scheme effective in a
variety of point-to-point networks and can also be adapted to broadcast
networks.

UCI
DREAM Lab

The SNS scheme – Fault sources

Processor

X

Internal
I-unit

Internal
O-unit

X

… …

Node

…

…
*

*

*

*

Fault sources
• Processor
• incoming communication handling unit
• outgoing communication handling unit
• point-to-point interconnection network

UCI
DREAM Lab

The SNS scheme – Fault Frequencies

Fault frequencies assumptions:
(A1) The fault-source components in each node do not generate messages

containing erroneous values or untimely messages.

(A2) Each of the nodes performing store-and-forward functions (as well as
the source node) transmits each stored message twice continuously.
It is assumed that this makes the probability of transient faults in the
components of the two neighbor nodes and transient faults in the link
between the two neighbor nodes causing message losses to be negligible.

(A3) It is assumed that no second permanent hardware fault occurs in the system
until either the detection of the first permanent hardware fault F or a fast
re-election of the supervisor (which involves one message multicast) is done.
Also network partitioning doesn't occur during the lifetime of the application.

(A4) The clocks in the nodes are kept synchronized sufficiently closely for practical
purposes, i.e., for the given applications. GPS (global positioning system)
based approaches and other cheaper high-precision approaches which have
become available in recent years may be utilized.

UCI
DREAM Lab

The SNS scheme architecture

Communication Network

Worker
(Supervisor’s

Neighbor)
Supervisor

Worker
(Supervisor’s

Neighbor)

Worker Worker…

… …

Basic duties of work nodes
• Exchange heartbeat messages with its neighbors;
• Monitor its neighbors’ health status;
• Generate fault suspicion report if necessary.

UCI
DREAM Lab

The SNS scheme architecture

Communication Network

Worker
(Supervisor’s

Neighbor)
Supervisor

Worker
(Supervisor’s

Neighbor)

Worker Worker…

… …

Additional duties of the supervisor node
• Determine other nodes’ health status based on the received suspicion reports;
• After confirming a fault, inform all the related nodes.

UCI
DREAM Lab

The SNS Implementation on the TMOSM

SNS message types:
• Heart Beat Message
• Fault Suspicion Message
• Fault Announcement Message
• Supervisor-Fault Suspicion Message
• New Supervisor Announcement Message

Note:
• Message sending and receiving are done in MMCT;
• Generation and analysis of messages are done in NST (Network Surveillance

Thread), which is a special SpM.

MMCT

NST

From network To network

Incoming
message queue

Outgoing
message queue

Request
queue

HeartBeat signal
Fault announcement
Fault suspicion report HeartBeat signal

Fault announcement
Fault suspicion report

UCI
DREAM Lab

NumHBSignals received
< Num of healthy neighbors ?

NumHBSignals received > 0 ?

Find the neighbor node Y from
which HB signal is not received

Is Y marked “possibly faulty” ?

HB signals received on all
attached healthy link?

Mark Y as “possibly faulty”.
Inform the supervisor about

the anomaly

Find the link K over which HB
is not received

Mark K as “faulty”. Inform
the supervisor about the fault

Try to use some info from the
supervisor. (Might change Y’s status

to permanently faulty. Inform
The supervisor. Consider all links

attached to Y as unusable)

Mark host node as PI faulty.
Inform the supervisor. If the host

node is a LOCAL_MASTER,
mark all of its LOCAL_SLAVE

“faulty” and inform the supervisor

Return

Y

N

N

Return

Y

Y

N

Y

N

Am I a LOCAL_SLAVE? Return

N

Y

Shutdown the host node

Algorithm used by
the worker’s NST

UCI
DREAM Lab

Algorithm used by the supervisor NST

Is there any “spontaneous
fault report” for Y?

Is there any “fault suspicion”
for Y?

Is the number of
“faulty suspicion” > 1

Mark Y as “faulty”. Multicast
this msg. If this change makes

node X has only one
neighbor Z left, claim X is Z’s
slave and multicast this msg

Continue

Mark Y as
“possibly faulty”.

Multicast this msg

Continue

Y

Y

N

Y

N

For each worker node Y

N Is Y’s status
“possibly faulty”?

N

Y

Is there any “fault report”
for L?

Mark L as “faulty”.
Multicast this msg

Continue

Continue

N

Y

N

For each link L

UCI
DREAM Lab

Is there any “Faulty report”
for L?

Mark L as “faulty”.
Multicast this msg

Continue

Continue

N

Y

N

For each worker Link L

Algorithm used by the supervisor NST

UCI
DREAM Lab

Fault Detection time Bound Analysis

Definition:
1) MIT: Maximum incoming message turnaround time of MMCT. i.e.,

Maximum amount of time that elapses from the arrival of a message
in the input queue of MMCT in a node to the time at which MMCT
completes the forwarding of the item to its destination thread.

2) MOT: Maximum outgoing message turnaround time of MMCT. i.e.,
Maximum amount of time that elapses from the time of arrival of an item
at the input queue of MMCT to the time at which MMCT sends out the item.

3) MNT: Maximum NST turnaround time. i.e., Maximum amount of time
that elapses from the time of arrival of an item at the input queue of NST
to the time at which NST completes the processing of the item.

…

UCI
DREAM Lab

p

MD

MIT

MNT

HeartBeat Msg

Node X Node Y

Round
i

Round
i + 1

MIT

MNT

hi
x,y,4

hi+1
x,y,4

hi
y,x,4

hi+1
y,x,4

NST execution

ri
x,y,4

ri
y,x,4

ri+1
x,y,4

ri+1
x,y,4

• All messages initiate in round i will be received in the
the same round.

• When NST starts to execute, all messages initiate the
previous round have been delivered to its input queue.
All of the messages in the input queue will be processed
before the completion of the NST execution.

The SNS scheme -
Fault detection time bound analysis

UCI
DREAM Lab

Node X Node Y Node Z Supervisor

X

Heartbeat signal

Omitted heartbeat signal

Fault suspicion report

Fault announcement

X
NPT execution

PO fault

p
Round

i

Round
i + 1

p + e

hi
x,z,4

hi
x,y,1

hi+1
x,z,4

hi+1
x,y,4

MD

MIT + MNT

LPO_NEI

ri
x,z,4

ri+1
x,z,4

ri+1
x,y,4

ri
x,y,1

The SNS scheme -
Fault detection time bound analysis

UCI
DREAM Lab

Node X Node Y Node Z Supervisor

X

Heartbeat signal

Omitted heartbeat signal

Fault suspicion report

Fault announcement

X
NPT execution

PO fault

p
Round

i

Round
i + 1

Round
i + 2

p + e

hi
x,z,4

hi
x,y,1

hi+1
x,z,4

hi+1
x,y,4

MD

MIT + MNT

MOT

MD

MIT + MNT

LPO_NEI

LPO_SUP

ri
x,z,4

ri+1
x,z,4

ri+1
x,y,4

ri
x,y,1

The SNS scheme -
Fault detection time bound analysis

UCI
DREAM Lab

The detection procedure of a PO fault
in a worker node – node X

Node X Node Y Node Z Supervisor

X

heartbeat signal

Omitted heartbeat signal

Fault suspicion report

Fault announcement

X
NPT execution

PO fault

p
Round

i

Round
i + 1

Round
i + 2

Round
i + 3

p + e

hi
x,z,4

hi
x,y,1

hi+1
x,z,4

hi+1
x,y,4

MD

MIT + MNT

MOT

MD

MIT + MNT

MCAST

MD

MIT + MNT

LPO_NEI

LPO_SUP

LPO

ri
x,y,1

ri
x,z,4

ri+1
x,y,4

ri+1
x,z,4

The SNS scheme -
Fault detection time bound analysis

UCI
DREAM Lab

Node X Node Y Node Z Supervisor

X

Heartbeat signal

Lost heartbeat signal

Fault suspicion report

Fault announcement

X
NPT execution

PI fault

p
Round

i

Round
i + 1

Round
i + 2

Round
i + 3

p + e

hi
x,z,1

hi
y,x,4

hi+1
y,x,4 hi+1

z,x,4

MIT + MNT

MOT

MD

MIT + MNT

MCAST

MD

MIT + MNT

LPI_LOC

LPI_SUP

LPI

hi
z,x,1

The detection procedure of a PI fault
in a worker node – node X

ri
z,x,1

ri
y,x,4

ri+1
z,x,4

ri+1
y,x,4

The SNS scheme -
Fault detection time bound analysis

UCI
DREAM Lab

Node X Node Y Node Z Supervisor

X

Heartbeat signal

Omitted heartbeat signal

Fault suspicion report

Fault announcement

X
NPT execution

Permanent processor fault

p
Round

i

Round
i + 1

Round
i + 2

Round
i + 3

p + e

hi
x,z,4

hi
x,y,1

hi+1
x,z,4

hi+1
x,y,4

MD

MIT + MNT

MOT

MD

MIT + MNT

MCAST

MD

MIT + MNT

LPP_NEI

LPP_SUP

LPP

The detection procedure of a permanent processor fault
in a worker node – node X

ri
x,z,4

ri+1
x,z,4

hi
x,y,1

ri+1
x,y,4

The SNS scheme -
Fault detection time bound analysis

UCI
DREAM Lab

Node X Node Y Node Z Supervisor

X

Heartbeat signal

Lost heartbeat signal

Fault suspicion report

Fault announcement

X
NPT execution

Permanent link fault

p
Round

i

Round
i + 1

Round
i + 2

Round
i + 3

p - e

hi
x,z,1

hi
x,y,3

hi+1
x,z,1

hi+1
x,y,4

MD

MIT + MNT

MOT

MD

MIT + MNT

MCAST

MD

MIT + MNT

LPLS

LPLS_SUP

LPLS

The detection procedure of a permanent Link fault
by the sender node – node X

hi
x,y,4

p

hi+1
x,y,3

ri
x,z,1

ri+1
x,z,1

ri
x,y,4

ri+1
x,y,4

The SNS scheme -
Fault detection time bound analysis

UCI
DREAM Lab

Node X Node Y Node Z Supervisor

X

Heartbeat signal

Lost heartbeat signal

Fault suspicion report

Fault announcement

X
NPT execution

Permanent link fault

p
Round

i

Round
i + 1

Round
i + 2

Round
i + 3

p - e

hi
x,z,1

hi
x,y,3

hi+1
x,z,1

hi+1
x,y,4

MD

MIT + MNT

MOT

MD

MIT + MNT

MCAST

MD

MIT + MNT

LPLR

LPLR_SUP

LPLR

The detection procedure of a permanent Link fault
by the receiver node – node Y

hi
x,y,4

hi+1
x,y,3

ri+1
x,z,1

hi
x,z,1

ri
x,y,4

ri+1
x,y,4

The SNS scheme -
Fault detection time bound analysis

UCI
DREAM Lab

X

Heartbeat signal

Omitted heartbeat signal

Fault suspicion report

Fault announcement

X
NPT execution

PO fault

p
Round

i

Round
i + 1

Round
i + 2

Round
i + 3

p + e

hi
s,y,1

hi
s,x,4

ri+1
s,x,4

hi+1
s,x,4

MD

MIT + MNT

MCAST’

MD

MIT + MNT

MCAST

MD

MIT + MNT

LSPO_NEI

LSPO_ELE

LSPO

hi+1
s,y,4

Supervisor neighbor
Node X Node z Supervisor

Supervisor neighbor
Node Y

The detection procedure of a PO fault
in the supervisor node

ri
s,y,1

ri
s,x,4

ri+1
s,y,4

The SNS scheme -
Fault detection time bound analysis

UCI
DREAM Lab

Supervisor neighbor
Node X Node z Supervisor

Supervisor neighbor
Node Y

X

Heartbeat signal

Lost heartbeat signal

Fault suspicion report

Fault announcement

X
NPT execution

PI fault

p
Round

i

Round
i + 1

Round
i + 2

Round
i + 3

p + e

hi
y,s,1

hi
x,s,4

hi+1
x,s,4

MIT + MNT

MCAST’

MD

MIT + MNT

MCAST

MD

MIT + MNT

LSPI_NEI

LSPI_ELE

LSPI

hi+1
y,s,4

The detection procedure of a PI fault
in the supervisor node

ri
x,s,4

ri
y,s,1

ri+1
x,s,4

ri+1
y,s,4

The SNS scheme -
Fault detection time bound analysis

UCI
DREAM Lab

X

Heartbeat signal

Omitted heartbeat signal

Fault suspicion report

Fault announcement

X
NPT execution

Permanent processor fault

p
Round

i

Round
i + 1

Round
i + 2

Round
i + 3

p + e

hi
s,y,1

hi
s,x,4

hi+1
s,x,4

MD

MIT + MNT

MCAST’

MD

MIT + MNT

MCAST

MD

MIT + MNT

LSPP_NEI

LSPP_ELE

LSPP

hi+1
s,y,4

Supervisor neighbor
Node X Node z Supervisor

Supervisor neighbor
Node Y

The detection procedure of a permanent processor fault
in the supervisor node

ri
s,y,1

hi
s,x,4

hi+1
s,x,4 ri+1

s,y,4

The SNS scheme -
Fault detection time bound analysis

UCI
DREAM Lab

Algorithm used by the supervisor NST

Experimental data
Message delay

1) 400 byte package
1. In isolated network: 189us;
2. In Internet environment: 192us;

2) 600 byte package
1. In isolated network: 212 us;
2. In Internet environment: 236us.

Maximum MMCT turnaround time: 82us.
Maximum NST turnaround time: 28us.

Selecting NST execution period p = 12ms,
both the fault detection and the new supervisor election take about 3.5 p, 42ms

UCI
DREAM Lab

Algorithm used by the supervisor NST

Multi-campus Net

…

node11 node12 node1N node2N

…

node31 node32 node3N

Local
Broadcast

Domain

node22
…

node21

node23

Local
Point-to-Point

Domain

Local
Point-to-Point

Domain

The main issues of adaptation are:
1) selecting appropriate neighboring scheme, and
2) establishing two independent communication paths

between any two nodes in the system.

UCI
DREAM Lab

PSTR -
The Primary Shadow TMO Replication Scheme

UCI
DREAM Lab

• The PSTR scheme is a result of incorporating the primary-shadow
active replication principle, into the TMO object structuring scheme.

• A natural way to incorporate the active replication principle into the TMO
structuring scheme is to replicate each TMO to form a pair of partner objects
and host the partners in two different nodes.

• The methods of the primary object along will produce all external outputs
under normal circumstance.

• Since each partner has the same external inputs and its own object data
store (ODS), the methods of both objects perform the same execution
and ODS updates.

The PSTR scheme

UCI
DREAM Lab

ODS

Primary SpM Section

Primary SvM1

Save client request
Send ack. to the client

Notify client
request ID

Acceptance
Test

Commit

Notify AT success

Update ODSS’s &
release locks, if any

External output(s)

Output success

Initiation
Condition

check

pass

*

+

ODS

Shadow SpM Section

Shadow SvM1

Save client
request

Acceptance
Test

Commit

Receive AT
result

Update ODSS’s &
release locks, if any

Initiation
Condition

check

pass

*

+

Primary’s client
Request IDSRQ SRQ

Primary
SvM2

Shadow
SvM2

+

: wait
+ : compute absolute deadline
* : may involve acquiring

ODSS locks

Node A Node B

An SvM Execution
in PSTR

Normal Case

Transaction 1
begins …

Receive output
success notice

For each external
output, execute

the actions
listed in this box

Transaction 2
begins …

Transaction 2
begins …

Transaction 1
begins …

Report completion Report completion

Note:
External outputs are sent
by MMCT, possibly through
VLIIT.

UCI
DREAM Lab

Handling inputs to TMO replicas – Service request

Service request:
TMO1, SvM2

Service request:
TMO1, SvM2, primary

Service request:
TMO1, SvM2, shadow

TMOSM
In

Node2
TMOSM

In
Node3

SRQ SRQ

TMO1
primary

TMO1
shadow

TMOSM
In

Node1
TMO1 SvM2 …

TMO3 SvM1 …

…

TMO1 SvM2 …

TMO4 SvM4 …

…

SvMInfoList (Primary) SvMInfoList (Shadow)

TMO3

… …

UCI
DREAM Lab

Handling inputs to TMO replicas – Result return

TMOSM
In

Node1

Service result return
TMO3, SvM1

Service result return:
TMO3, SvM1, primary

Service result return:
TMO3, SvM1, shadow

TMOSM
In

Node2
TMOSM

In
Node3

RRQ RRQ

TMO3
primary

TMO3
shadow

TMO3 SvM1 …

TMO1 SvM1 …

…

TMO2 SvM5 …

TMO3 SvM1 …

…

SvMInfoList (Primary) SvMInfoList (Shadow)

TMO1

… …

UCI
DREAM Lab

Types of faults & their symptoms

• Hardware faults
– Symptoms 1.1 Node crash
– Symptoms 1.2 Process/thread gets corrupted – no progress
– Symptoms 1.3 Process/thread gets corrupted – progress but

with contaminated state (Low probability)
– Symptoms 2.1 Resource shortage -> Process/thread lockup/stall

• OS faults
– Symptoms 1.1 Node crash
– Symptoms 1.2 Process/thread gets corrupted – no progress
– Symptoms 1.3 Process/thread gets corrupted – progress but

with contaminated state (Low probability)
– Symptoms 2.1 Resource shortage -> Process/thread lockup/stall

• Communication failures
– Symptoms 3.1 Message loss
– Symptoms 3.2 Duplicated messages

• Application design faults
– Symptoms 1.2 Process/thread gets corrupted – no progress
– Symptoms 1.3 Process/thread gets corrupted – progress but

with contaminated state (high probability)

UCI
DREAM Lab

PSTR fault detection mechanism

• Primary’s AT - logic test (Detection mechanism(DM) 1.1)
• Primary’s AT – timeout (DM 1.2)
• Primary’s sending of clientRequestID – timeout (DM 1.3)
• Shadow’s wait for clientRequestID – timeout (DM 2.1)
• Shadow’s AT - logic test (DM 2.2)
• Shadow’s AT – timeout (DM 2.3)
• Shadow’s wait for primary’s AT result – timeout (DM 2.4)
• Shadow’s wait for primary’s notice of external output success

– timeout (DM 2.5)
• SNS’s node failure notice (DM 3.1)
• Message-sequence check(Double transmission over redundant links

are done) (DM 4.1)
• Absence of ack. (DM 4.2)

– Server’s ack of an SvM request (DM 4.2.1)
– Server’s return of the expected result (DM 4.2.2)

• Unacceptable request to kernel/middleware (DM 5.1)

Note:
1. When a TMO changes its role between primary & shadow, it reports

the change to TMOSM which in turn notifies the TNCM. The TNCM
can detect primary-primary situations

2. Every external output should be done in an independent manner.

UCI
DREAM Lab

PSTR fault detection mechanism

• Primary’s AT - logic test (Detection mechanism(DM) 1.1) - Given by application programmers

• Primary’s AT – timeout (DM 1.2) - Given by application programmers
or by the tools

• Primary’s sending of clientRequestID – timeout (DM 1.3) - Given by application programmers
or by the tools

• Shadow’s wait for clientRequestID – timeout (DM 2.1) - Given by application programmers
or by the tools

• Shadow’s AT - logic test (DM 2.2) - Given by application programmers

• Shadow’s AT – timeout (DM 2.3) - Given by application programmers
or by the tools

• Shadow’s wait for primary’s AT result – timeout (DM 2.4) - Derived

• Shadow’s wait for primary’s notice of external output success - Derived
– timeout (DM 2.5)

UCI
DREAM Lab

PSTR fault detection mechanism

• SNS’s node failure notice (DM 3.1)

• Message-sequence check(Double transmission over redundant links
are done) (DM 4.1)

• Absence of ack. (DM 4.2)
– Server’s ack of an SvM request (DM 4.2.1)
– Server’s return of the expected result (DM 4.2.2)

• Unacceptable request to kernel/middleware (DM 5.1)

- Provided by TMOSM

UCI
DREAM Lab

Typical cases of fault detection
under PSTR + SNS

C1.5

C1.5

C1.5

C1.5

C1.5

C1.5

C1.5

C1.5

C1.5

C1.5

C1.5

C1.5

C1.3

C1.3

C1.3

C1.3

C1.3

C1.3

C1.3C1.2

C1.2

C1.2

C1.2

C1.2

C1.2

C1.2

C1.3C1.2

C1.3C1.2

C1.3C1.2

C1.3C1.2

C1.7 C1.8

C1.7 C1.8

C1.7 C1.8

C1.7 C1.8

C1.7 C1.8

C1.7 C1.8

C1.7 C1.8

C1.7 C1.8

Sym1.3

Sym1.2

Sym3.2

Sym3.1

Sym2.1

Sym1.3

Sym1.2

Sym1.1

C1.9C1.1C1.6

C1.1C1.6App

C1.1Comm

C1.4C1.1C1.6

C1.9C1.1C1.6

C1.1C1.6

Sym2.1

Sym1.3

Sym1.2

Sym1.1

DM

3.1

DM

4.1

DM

4.2

Messaging

DM

2.4

DM

2.5

DM

2.3

DM

2.2

DM

2.1

DM

1.1

DM

1.3

DM

1.2

C1.4C1.1

OS

C1.4C1.1C1.6

C1.9C1.1C1.6

C1.1C1.6

C1.4C1.1

Hard

ware

Kernel/

Middleware

DM5.1

SNSShadowPrimaryDetection

mechanisms

Fault types

Faults in the primary

UCI
DREAM Lab

Typical cases of fault detection
under PSTR + SNS

C2.4

C2.4

C2.4

C2.4

C2.4

C2.4

C2.4

C2.4

C2.4

C2.4

C2.4

C2.4

C2.2

C2.2

C2.2

C2.2

C2.2

C2.2

C2.3

C2.3

C2.3

C2.3

C2.3

C2.3

C2.2 C2.3

C2.3

C2.2

C2.2

C2.3

Sym1.3

Sym1.2

Sym3.2

Sym3.1

Sym2.1

Sym1.3

Sym1.2

Sym1.1

C2.5

App

Comm

C2.1

C2.5

Sym2.1

Sym1.3

Sym1.2

Sym1.1

DM

3.1

DM

4.1

DM

4.2

Messaging

DM

2.4

DM

2.5

DM

2.3

DM

2.2

DM

2.1

DM

1.1

DM

1.3

DM

1.2

C2.1

OS

C2.1

C2.5

C2.1

Hard

ware

Kernel/

Middleware

DM5.1

SNSShadowPrimaryDetection

mechanisms

Fault types

Faults in the shadow

UCI
DREAM Lab

ODS

Primary SpM Section

Primary SvM1

Node crashes

Initiation
Condition

check

ODS

Shadow SpM Section

Shadow SvM1

Save client
request

Initiation
Condition

check

Primary’s client
Request IDSRQ SRQ

Primary
SvM2

Shadow
SvM2

+

: wait
+ : compute absolute deadline
* : may involve acquiring

ODSS locks

Node A Node B

Case C1.1A
Node crash in the

primary node during
SvM initiation

External output(s)

For each external
output, execute

the actions
listed in this box

Transaction 2
begins …

Fail to receive
client ID from primary

Report completion

Change to Primary.
Inform the TNCM
and other SxM’s

Fatal error
occurs

Save client request
Send ack. to the client

Note:
External outputs are sent
by MMCT, possibly through
VLIIT.

Note:
After this node crash, the TNCM

in the master node detects it through
The SNS and starts to relocate all the
TMO’s in this node to other health
nodes. Those relocated TMO’s
Will be started as shadow TMO’s
and they will collaborate with the
Active primary TMO’s to catch
Up by receiving current status
Data from the primary TMO’s.

Acceptance
Test

Commit

Notify AT success

pass

Transaction 1
begins …

UCI
DREAM Lab

ODS

Primary SpM Section

Primary SvM1

Initiation
Condition

check

ODS

Shadow SpM Section

Shadow SvM1

Save client
request

Initiation
Condition

check

Primary’s client
Request IDSRQ SRQ

Primary
SvM2

Shadow
SvM2

+

: wait
+ : compute absolute deadline
* : may involve acquiring

ODSS locks

Node A Node B

Case C1.1B
Other failures in the
primary node during

SvM initiation

External output(s)

For each external
output, execute

the actions
listed in this box

Transaction 2
begins …

Fail to receive
client ID from primary

Report completion

Change to Primary.
Inform the TNCM
and other SxM’s

Transient failure
occurs

Save client request
Send ack. to the client

Note:
External outputs are sent
by MMCT, possibly through
VLIIT.

Acceptance
Test

Commit

Notify AT success

pass

Transaction 1
begins …

Fail to notify client
request ID

Inform other
SxM’s in the
same TMO

Change mode to
Shadow

*

Transaction 1
begins …

Error detected

Rollback & Recovery

+

Inform the TNCM
and the shadow

Report completion

UCI
DREAM Lab

ODS

Primary SpM Section

Primary SvM1

Notify client
request ID

Node crashes

Initiation
Condition

check

*

ODS

Shadow SpM Section

Shadow SvM1

Save client
request

Acceptance
Test

Commit

Fail to receive
AT result

Update ODSS’s &
release locks, if any

Initiation
Condition

check

pass

*

Primary’s client
Request IDSRQ SRQ

Primary
SvM2

Shadow
SvM2

+

: wait
+ : compute absolute deadline
* : may involve acquiring

ODSS locks

Node A Node B

Case C1.2A
Node crash in the

primary node during
one transaction

Transaction 1
begins …

External output(s)

For each external
output, execute

the actions
listed in this box

Transaction 2
begins …

Transaction 1
begins …

Report completion

Change to Primary.
Inform the TNCM
and other SxM’s

Fatal error
occurs

Save client request
Send ack. to the client

Note:
External outputs are sent
by MMCT, possibly through
VLIIT.

Note:
After this node crash, the TNCM

in the master node detects it through
The SNS and starts to relocate all the
TMO’s in this node to other health
nodes. Those relocated TMO’s
Will be started as shadow TMO’s
and they will collaborate with the
Active primary TMO’s to catch
Up by receiving current status
Data from the primary TMO’s.

+

UCI
DREAM Lab

ODS

Primary SpM Section

Primary SvM1

Notify client
request ID

AT timeout

Inform other
SxM’s in the
same TMO

Change mode to
Shadow

Initiation
Condition

check

*

+

ODS

Shadow SpM Section

Shadow SvM1

Save client
request

Acceptance
Test

Commit

Receive AT
timeout msg

Update ODSS’s &
release locks, if any

Initiation
Condition

check

pass

*

Primary’s client
Request IDSRQ SRQ

Primary
SvM2

Shadow
SvM2

+

: wait
+ : compute absolute deadline
* : may involve acquiring

ODSS locks

Node A Node B

Case C1.2B
AT Timeout

in the primary node

Transaction 1
begins …

External output(s)

For each external
output, execute

the actions
listed in this box

Transaction 2
begins …

Transaction 2
begins …

Transaction 1
begins …

Report completion Report completion

Rollback & Recovery

Change to Primary.
Inform the TNCM
and other SxM’s

Save client request
Send ack. to the client

Note:
External outputs are sent
by MMCT, possibly through
VLIIT.

X

Inform the TNCM
and the shadow

UCI
DREAM Lab

ODS

Primary SpM Section

Primary SvM1

Notify client
request ID

Node crashes

Initiation
Condition

check

*

ODS

Shadow SpM Section

Shadow SvM1

Save client
request

Acceptance
Test

Receive AT
result notice

…

Initiation
Condition

check

pass

*

Primary’s client
Request IDSRQ SRQ

Primary
SvM2

Shadow
SvM2

+

: wait
+ : compute absolute deadline
* : may involve acquiring

ODSS locks

Node A Node B

Case C1.3A
Node crash in the

primary node during
one transaction

Transaction 1
begins …

External output(s)

For each external
output, execute

the actions
listed in this box

Transaction 2
begins …

Transaction 1
begins …

Report completion

Change to Primary.
Inform the TNCM
and other SxM’s

Fatal error
occurs

Save client request
Send ack. to the client

Note:
External outputs are sent
by MMCT, possibly through
VLIIT.

+

Acceptance
Test

Commit

Notify AT success

pass

Fail to recv
output suc

UCI
DREAM Lab

ODS

Primary SpM Section

Primary SvM1

Node crashes

Initiation
Condition

check

ODS

Shadow SpM Section

Shadow SvM1

Save client
request

Initiation
Condition

check

Primary’s client
Request IDSRQ SRQ

Primary
SvM2

Shadow
SvM2

+

: wait
+ : compute absolute deadline
* : may involve acquiring

ODSS locks

Node A Node B

Case C1.4A
Node crash in the

primary node during
SvM initiation

- Detected by SNS

External output(s)

For each external
output, execute

the actions
listed in this box

Transaction 2
begins …

SNS report received.
No need to wait for primary

Report completion

Change to Primary.
Inform the TNCM
and other SxM’s

Fatal error
occurs

Save client request
Send ack. to the client

Note:
External outputs are sent
by MMCT, possibly through
VLIIT.

Note:
After this node crash, the TNCM

in the master node detects it through
The SNS and starts to relocate all the
TMO’s in this node to other health
nodes. Those relocated TMO’s
Will be started as shadow TMO’s
and they will collaborate with the
Active primary TMO’s to catch
Up by receiving current status
Data from the primary TMO’s.

Acceptance
Test

Commit

Notify AT success

pass

Transaction 1
begins …

SNS fault report

UCI
DREAM Lab

ODS

Primary SpM Section

Primary SvM1

Notify client
request ID

Node crashes

Initiation
Condition

check

*

ODS

Shadow SpM Section

Shadow SvM1

Save client
request

Acceptance
Test

Commit

SNS report recved.
No need to wait for AT

Update ODSS’s &
release locks, if any

Initiation
Condition

check

pass

*

Primary’s client
Request IDSRQ SRQ

Primary
SvM2

Shadow
SvM2

+

: wait
+ : compute absolute deadline
* : may involve acquiring

ODSS locks

Node A Node B

Case C1.4B
Node crash in the

primary node during
one transaction

- Detected by SNS

Transaction 1
begins …

External output(s)

For each external
output, execute

the actions
listed in this box

Transaction 2
begins …

Transaction 1
begins …

Report completion

Change to Primary.
Inform the TNCM
and other SxM’s

Fatal error
occurs

Save client request
Send ack. to the client

Note:
External outputs are sent
by MMCT, possibly through
VLIIT.

Note:
After this node crash, the TNCM

in the master node detects it through
The SNS and starts to relocate all the
TMO’s in this node to other health
nodes. Those relocated TMO’s
Will be started as shadow TMO’s
and they will collaborate with the
Active primary TMO’s to catch
Up by receiving current status
Data from the primary TMO’s.

+

SNS fault report

UCI
DREAM Lab

ODS

Primary SpM Section

Primary SvM1

Save client request
Send ack. to the client

Notify client
request ID

Acceptance
Test - Timeout

Rollback & retry

Notify AT success

Update ODSS’s &
release locks, if any

External output(s)

Output success

Initiation
Condition

check

*

+

ODS

Shadow SpM Section

Shadow SvM1

Save client
request

Acceptance
Test

Commit

Receive AT
result

Update ODSS’s &
release locks, if any

Initiation
Condition

check

pass

*

+

Primary’s client
Request IDSRQ SRQ

Primary
SvM2

Shadow
SvM2

+

: wait
+ : compute absolute deadline
* : may involve acquiring

ODSS locks

Node A Node B

Case C1.7
AT timeout

in the primary

Transaction 1
begins …

Receive output
success notice

For each external
output, execute

the actions
listed in this box

Transaction 2
begins …

Transaction 2
begins …

Transaction 1
begins …

Report completion Report completion

Note:
External outputs are sent
by MMCT, possibly through
VLIIT.

X

UCI
DREAM Lab

ODS

Primary SpM Section

Primary SvM1

Save client request
Send ack. to the client

Notify client
request ID

Acceptance
Test

Commit

Notify AT success

Update ODSS’s &
release locks, if any

External output(s)

Output success

Initiation
Condition

check

pass

*

+

ODS

Shadow SpM Section

Shadow SvM1

Save client
request

Initiation
Condition

check

*

Primary’s client
Request IDSRQ SRQ

Primary
SvM2

Shadow
SvM2

+

: wait
+ : compute absolute deadline
* : may involve acquiring

ODSS locks

Node A Node B

Case 2.1
Node crash in the

shadow node during
one transaction

Transaction 1
begins …

For each external
output, execute

the actions
listed in this box

Transaction 2
begins …

Transaction 1
begins …

Report completion

Note:
External outputs are sent
by MMCT, possibly through
VLIIT.

Node crashes

Fatal error
occurs

Note:
After this node crash, the TNCM

in the master node detects it through
The SNS and starts to relocate all the
TMO’s in this node to other health
nodes. Those relocated TMO’s
Will be started as shadow TMO’s
and they will collaborate with the
Active primary TMO’s to catch
Up by receiving current status
Data from the primary TMO’s.

UCI
DREAM Lab

ODS

Primary SpM Section

Primary SvM1

Save client request
Send ack. to the client

Notify client
request ID

Acceptance
Test

Commit

Notify AT success

Update ODSS’s &
release locks, if any

External output(s)

Output success

Initiation
Condition

check

pass

*

+

ODS

Shadow SpM Section

Shadow SvM1

Save client
request

Initiation
Condition

check

*

Primary’s client
Request IDSRQ SRQ

Primary
SvM2

Shadow
SvM2

+

: wait
+ : compute absolute deadline
* : may involve acquiring

ODSS locks

Node A Node B

Case 2.2
Temp failure

in the shadow node

Transaction 1
begins …

For each external
output, execute

the actions
listed in this box

Transaction 2
begins …

Transaction 2
begins …

Transaction 1
begins …

Report completion Report completion

Note:
External outputs are sent
by MMCT, possibly through
VLIIT.

Inform the TNCM

Inform other
SxM’s in the
same TMO

Resume as shadow

AT fails

Rollback & Recovery

UCI
DREAM Lab

Primary Shadow
(fault-free case)

Client request
message

__
Pick up msg

Pick up
msg

__
AT

AT
__

__

__
Pick up
msg

__
Pexec

MOT

Pexec

__

MIT MIT

MMPT MMPT

MD

COMPL

AT result msg

ClientID msg

Output success msg

External
output

T
im

e

MOT

Pick up
msg

Pick up
msg

__

__

MIT

MMPT

t0

t1

PSTR timing chart
– normal case

MOT

The PSTR scheme -
Fault detection time bound analysis

UCI
DREAM Lab

Primary Shadow
(fault-free case)

Shadow
(Primary clientID failure case)

Client request
message

__
Pick up msg

Pick up
msg

__

__

AT

AT
__

AT
__

__

__

DLclientID

__
Pick up msg

__
Pick up
msg

Pexec

MOT

__

Pexec

MOT

Timeout

Pexec

__

__

MIT MIT MIT

MMPT MMPT MMPT

MIT

MMPT

MD

COMPL

COMPL

AT result msg

ClientID msg

Output success msgExternal output

External output

T
im

e

MOT

Pick up
msg

Pick up
msg

__

__

t0

t1

t2

ClientID msg

PSTR timing chart
– Primary clientID failure case

MOT

The PSTR scheme -
Fault detection time bound analysis

UCI
DREAM Lab

Primary Shadow
(fault-free case)

Shadow
(Primary output failure case)

Client request
message

__
Pick up msg

Pick up
msg

AT

AT
__AT __

__

__

DLclientID

__
Pick up msg

__
Pick up
msg

Pexec

MOT

__

Pexec

MOT

Pexec

__

__

MIT MIT MIT

MMPT MMPT MMPT

MOT

MD

COMPL

MIT

AT result msg

ClientID msg

Output success msgExternal output

External output

T
im

e

MOT

Pick up
msg

Pick up
msg

__

__

t0

t1

t2

__
COMPL

DLAT

MMPT

Pick up
msg

ClientID msg

AT result msg

PSTR timing chart
– primary AT failure case

The PSTR scheme -
Fault detection time bound analysis

UCI
DREAM Lab

Primary Shadow
(fault-free case)

Shadow
(Primary output failure case)

Client request
message

__
Pick up msg

Pick up
msg

AT

AT
__AT __

__

__

DLclientID

__
Pick up msg

__
Pick up
msg

Pexec

MOT

__

Pexec

MOT

Pexec

__

__

MIT MIT MIT

MMPT MMPT MMPT

MD

COMPL

MIT

AT result msg

Output success msg
External output

External output

T
im

e

MOT

Pick up
msg

Pick up
msg

__

__

t0

t1

t2

__
COMPL

DLAT

MMPT

Pick up
msg

AT result msg

Pick up
msg

__

DLOS

Output success msg

PSTR timing chart
– external output failure case

MOT
ClientID msgClientID msg

The PSTR scheme -
Fault detection time bound analysis

UCI
DREAM Lab

Primary Shadow
(fault-free case)

Shadow
(Primary output failure case)

Client request
message

__
Pick up msg

Pick up
msg

AT

AT
__AT __

__

__

DLclientID

__
Pick up msg

__
Pick up
msg

Pexec

MOT

__

Pexec

MOT

Pexec

__

__

MIT MIT MIT

MMPT MMPT MMPT

MD

COMPL

MIT

AT result msg

Output success msg
External output

External output

T
im

e

MOT

Pick up
msg

Pick up
msg

__

__

t0

t1

t2

__
COMPL

DLAT

MMPT

Pick up
msg

AT result msg

Pick up
msg

__

DLOS

Output success msg

PSTR timing chart
– external output failure case

MOT
ClientID msgClientID msg

The PSTR scheme -
Fault detection time bound analysis

UCI
DREAM Lab

PPTR -
The Primary Passive TMO Replication Scheme

UCI
DREAM Lab

TMO1
primary

TMO2
Primary

TMO3
simplex

TMOSM
in

node1

TMO-based
application1

SNS

PSTR PPTR

TMO1
shadow

TMO2
passive

TMO4
simplex

TMOSM
in

node2

OS & Comm. Network OS & Comm. Network

Fault Tolerance Support in TMOSM

• Simplex TMO’s
- no FT support

• Redundant TMO’s
- Active redundant (PSTR)
- Semi-active redundant (PPTR)

TNCM
SNS

PSTR PPTR

TNCM

UCI
DREAM Lab

SNS

PPTR

TMO2
primary

TMOSM
in

node1

SNS

PPTR

TMO2
passive

TMOSM
in

node2

OS & Comm. Network OS & Comm. Network

Co-operations between
the primary and passive replicas

• The TMOSM supporting the primary replica periodically records the TMO image (Snapshot), and
sends it to the TMOSM supporting the passive replica;

• Upon receiving the snapshot of the primary replica, the TMOSM supporting the passive replica
updates the passive replica’s status;

• In case the node supporting the active replica crashes, the TMOSM supporting the passive
replica, which is informed by the SNS subsystem, will convert the passive replica to the primary
and start scheduling it.

TMO snapshot
message

TNCM TNCM

UCI
DREAM Lab

Fault Tolerance Support in TMOSM

• Active redundant (PSTR)
- More synchronization

between redundant replicas;

- Use more resource (CPU, memory,
network bandwidth);

- Both primary and shadow are
active in the normal time;

- Shadow becomes primary when
fault happens in the primary;

- fault recovery time is short;

- After switch, the new primary
continue its execution;

• Semi-active redundant (PPTR)
- Less synchronization

between redundant replicas;

- Use less resource (CPU, memory,
network bandwidth);

- Only one replica, primary is active in the
normal time;

- passive replica becomes active when fault
happens in the primary;

- Fault recovery time is long;

- After switch, the new primary replica starts
from the last checkpoint;

UCI
DREAM Lab

The contents of a TMO snapshot

Ideally, a snapshot of TMO should consists of the following data:
1. Global data

- ODSS
- Heap data (Should not be used in a TMO program)

2. Local data
- Local variables in the stack

3. Current Thread context and CPU register value for each SxM

4. Un-processed service request from the client
- SRQ
- MMCT inputQ
- BlockedForMsgQ

Note:
Saving & recovering 1 and 4 are easy, but saving & recovering 2 and 3 are difficult.

The reason is that 2 and 3’s data are only meaningful within a process, but we may
need to migrate some TMO’s to another node or process.

UCI
DREAM Lab

Fault recovery (PPTR)

Case 1.1 Transient fault
- recovered by a local rollback to the last snapshot

X …

One SpM execution

One transaction

Transient fault Latest snapshot

Roll back to the last snapshot

UCI
DREAM Lab

Fault recovery (PPTR)

Case 1.2 Node crash (and node rejoin)
- recovered by convert the passive replica to the primary

…

One SpM execution

X

Node crash

…

…

New Node

Passive
TMO

latest
snapshot

Change to
primary

message
log

Passive
TMO

Snapshot message
log

Rejoin later

UCI
DREAM Lab

Fault recovery (PSTR)

Case 1.3 Node crash (and node rejoin)
- recovered by converting the shadow to the primary

…

One SpM execution

X

Node crash

…

Shadow

Primary

……

…

New Node

Change to primary here

Rejoin later

message
log

latest
snapshot

UCI
DREAM Lab

Primary replica Passive replica

Client request
message

PPTR timing chart

Client request
message

TMO Snapshot message

TMO Snapshot message omitted

X

WDLSNS

External
output

for round i

External
output

for round 2i
omitted

External
output

for round i

Pexec

Pexec

Pexec

round i

round 2i

CONSTRtmo

The PPTR scheme -
Fault detection time bound analysis

UCI
DREAM Lab

Conclusion

• A middleware architecture, named TMOSM (time-triggered message-triggered object
support middleware), has been established to support the development and execution
of the distributed real-time safety-critical applications, and the RIF-based resource
allocation framework and the real-time fault tolerance schemes have been
incorporated into it.

• RIF framework is a multi-level framework that covers from the application QoS
requirement specifications to the scheduling algorithms of various computation
resources, supporting multiple QoS dimensions, such as timeliness, fault tolerance
and deadline handling. RIF-based resource allocation scheme is a major improvement

from the current practice.

• The RIF-based resource allocation framework incorporates two real-time fault
tolerance schemes, PSTR/SNS (Primary Shadow TMO Replication / Supervisor-based
Network Surveillance) and PPTR/SNS (Primary Passive TMO Replication / SNS)
schemes. The main strength of the SNS scheme and the implementation are in that
they enable relatively easy determination of tight bounds on the fault detection
latency.

UCI
DREAM Lab

Future Research Directions

• Implementations of TMOSM on other COTS platforms, such as WinCE, UNIX, Linux,
and other distributed computing support environments, such as DCOM, .Net, and
real-time Java Virtual Machine.

• For RIF-based resource allocation framework, more works on tools which help the
application developer to derive the RIPF set from the RIF set are needed. Some other
QoS dimensions not covered currently, such as dynamic reconfiguration and security,
can be pursued as a future research direction.

• Searching for better scheduling algorithms based on RIPF and the integration of the
scheduling decisions of processor, communication network bandwidth and I/O devices
are very promising research issues also.

• For real-time fault tolerance scheme, a passive replication in which case the passive
replica does not interact with the primary replica and consume any resources during
normal operation time, can be considered to be incorporated into the current
framework.

