Efficient Multimedia Streaming for Power Aware Devices: A survey

Gautam Gopinadhan NCSU

Outline

- Introduction
- Categorization of Solutions
- Category 1: DVS Techniques
- Category 2: Network level optimizations
- Category 3: Content Adaptation
- Category 4: Architecture Changes
- Conclusion

Introduction

- What are Power Aware Devices? What are their characteristics?
 - Running on battery power energy consumption is crucial
 - Laptops, handhelds, mobile phones
 - Usually have Power Saving Features:
 - Power saving modes
 - Ability to switch off certain components (eg. Caches, memory banks)

Frequency, Voltage and Relative power of mobile AMD Athlon 4 CPU

Frequency	300	500	600	700	800	1000
Voltage	1.2	1.2	1.25	1.3	1.35	1.4
Relative	22.04	36.73	47.83	60.35	74.39	100
Power (%)						

Introduction

- Characteristics of Multimedia tasks
 - High consumption of CPU
 - High consumption of Networking resources (streaming)
 - High consumption of display resources (video)
 - Real time characteristics
 - Demands for resources varies a lot depends on content and media application
 - Low spatial locality in media data (poor caching behaviour)
- Research challenge to optimize energy consumption!

Introduction: MPEG basics

- MPEG video content -> sequence of images or "frames"
- 3 types of frames: I, P, B
- I frame -> Intra frame (medium compression)
 - I frame is independently coded

P frame -> Predicted frame (higher compression)

- P frame differentially coded with respect to a previous I frame or a P frame
- B frame -> Bidirectional frame (high compression)
 - B frame differentially coded with respect to a I/P frame ahead and I/P frame behind

Introduction: MPEG basics

- General Characteristics of various MPEG frames
 - Decoding expense : I > B > P
 - Decoding expense for 2 frames of the same type is usually similar in the short term
 - In the long term there can be high variability in the decoding times for a particular frame type

Power consumption of video decoding:

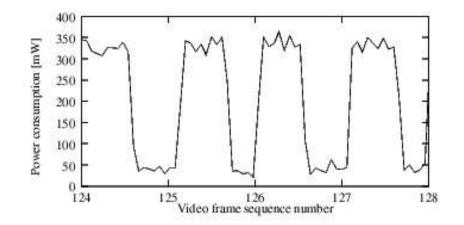
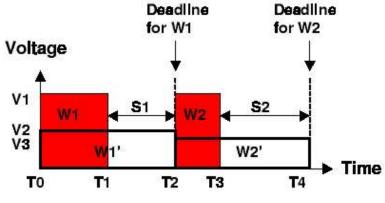


Figure 1: Power consumption of video decoding (15 fps).

Categorization of solutions

- Main source of energy consumption
 - CPU/memory + additional circuit boards (~1-3 W)
 - Network hardware (1.4 W)
 - Display (~1W)


Solutions mainly target these specific sources.

Categorization of Solutions

- Solutions categorized into following
 - DVS Techniques
 - DVS guided by CPU utilization prediction
 - Network level optimizations
 - Network device aware delivery optimizations
 - Content adaptation
 - Adapting media content to decrease processing
 - Architecture changes
 - Reconfiguration of hardware units (Simulated)

Category 1: DVS Techniques

- What is DVS?
 - Most mobile processors have Dynamic Voltage Scaling (DVS) support.
 Deadline
 Deadline
 - What is DVS?
 - Power = C * f * V^2
 - C = Circuit capacitance
 - F = Frequency of Processo.
 - V = Supply voltage
 - · Reducing voltage greatly reduces power
 - Concern: Reducing Voltage also reduces f.
 - Ensure deadline can be met under this low frequency
 - Spread "slack time" by reducing frequency of processor

DVS Techniques

- General technique:
 - Try to predict CPU requirement for decoding a media unit
 - Switch CPU frequency to appropriate level so media unit can be decoded.
- Pouwelse et al
- Insight: Strong correlation between frame size and decoding time

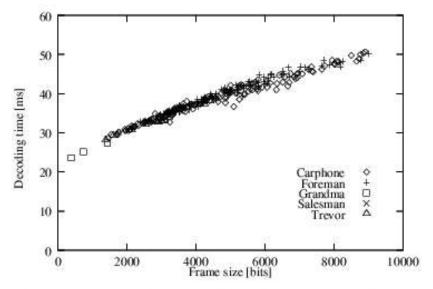
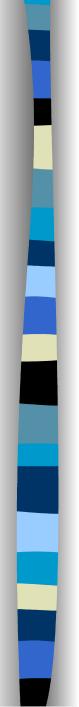
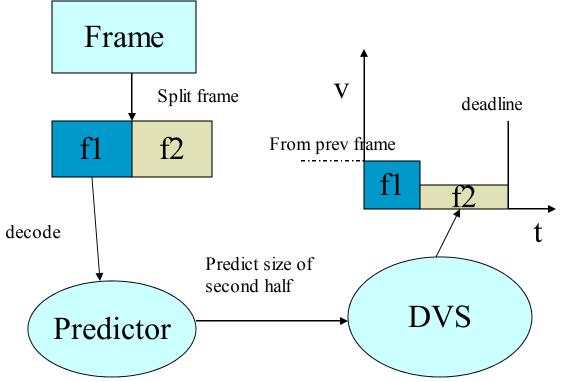
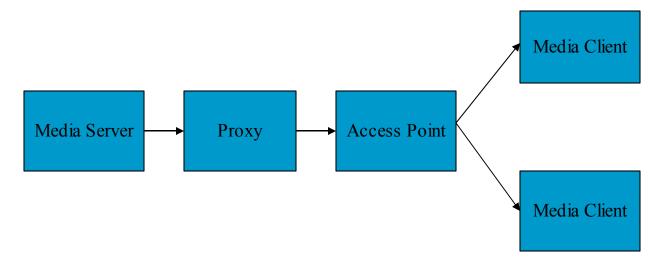




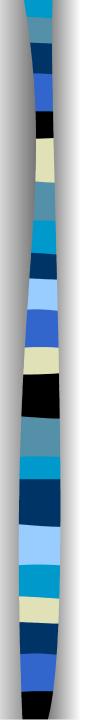
Figure 3: Decoding times for P frames @ 236 MHz.

Between 17% - 75% reduction

DVS Techniques


- Bavier et al.
- Average decoding time for previous frame of same frame type recorded
- Weighted adjustment depending on previous prediction success applied to get prediction value.
- Result:
 - Upto 80% improvement in power requirement
 - About 10-20% deadline misses

Network Level Optimizations


- Network cards have various power consumption characteristics
 - Cisco Aironet 350 series
 - Transmit (1.68 W)
 - Receive (1.435 W)
 - Idle (1.34 W)
 - Sleep (0.184W)
- Main idea:
 - Put card in sleep mode as often as possible

Network Level Optimizations

 Instead of sending data all the time, a Proxy sends data in bursts (Chandra et al)

- Burst send schedule is communicated with clients at scheduled times by proxy
- Clients receive data during scheduled times and sleep otherwise
- Result: Over 75% energy saved

Content Adaptation

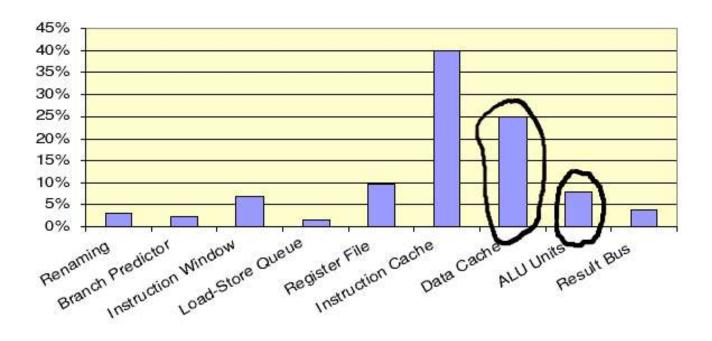
Work by Cornea et al.

Key insight:

- Media can be transcoded with different parameters (frame rate, bit rate, resolution) without noticeable change to human perception
- Concern: Relationship between media encoding parameters and CPU requirement at client is not clear
 - Use empirical methods to correlate parameter values to power consumption on client

Content Adaptation: Cornea et al.

Discrete levels of video quality in terms of parameters


Quality	Transformation Parameters	Avg. Power	Avg. Power
		(Windows CE)	(Linux)
Like Original (No improvement required)	SIF, 30fps, 650Kbps	$4.42 \mathrm{W}$	$6.07 \mathrm{W}$
Excellent	SIF, 25 fps, 450 Kbps	$4.37 \mathrm{W}$	$5.99 \mathrm{W}$
Very Good	SIF, 25fps, 350Kbps	$4.31 \mathrm{W}$	$5.86 \mathrm{W}$
Good	HSIF, 24fps, 350Kbps	$4.24 \mathrm{W}$	$5.81 \mathrm{W}$
Fair	HSIF, 24fps, 200Kbps	$4.15 \mathrm{W}$	$5.73 \mathrm{W}$
Poor	HSIF, 24fps, 150Kbps	$4.06 \mathrm{W}$	$5.63 \mathrm{W}$
Bad	QSIF, 20fps, 150Kbps	$3.95 \mathrm{W}$	$5.5 \mathrm{W}$
Terrible (poorer quality not acceptable)	QSIF, 20fps, 100kbps	3.88 W	$5.38 \mathrm{W}$

- Given energy level at client, maintain best possible video quality for duration of stream
- Proxy transcodes media according to parameter values

Architecture Changes

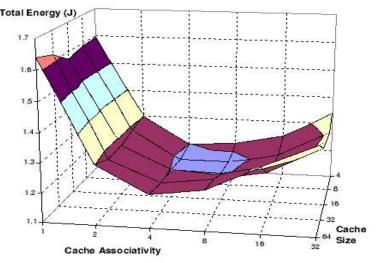

- General Idea
 - Assume architectural units are configurable
 - Switch off units if not required

Fig: CPU internal power distribution

Architecture Changes: Cache Reconfiguration

- Change data cache size and associativity [Cornea et. Al.]
 - Decreasing cache size -> lower cache power consumption
 - Concern:MPEG decoding exhibits poor locality -> greater cache-memory traffic.
 - Use extensive simulations to record "sweet spot" for a video quality level
 - Switch to optimal cache configuration for that video quality
 - 10-20% improvement

Cache Energy Variation on Size and Associativity

Summary Multiple v

- Multiple ways of supporting power aware multimedia applications
- 4 categories of solutions:
 - DVS Techniques (widely studied)
 - Network level optimizations
 - Content adaptation (relatively new and recently applied to the power domain)
 - Architecture adaptation (completely done through simulations, requires very specific hardware support)