
Page 1

Continuous Compilation for
Aggressive and Adaptive Code

Transformation

Bruce R. Childers

University of Pittsburgh
Pittsburgh, Pennsylvania, USA

childers@cs.pitt.edu
http://www.cs.pitt.edu/coco

Today’s talk is based on:
Min Zhao’s Ph.D. thesis, co-advised with Mary Lou Soffa

Sponsored by Next Generation Software, National Science Foundation

Code Optimization

• Critical role: Translate high-level language
programs into an efficient form to run on target
machine

• Sophisticated optimization algorithms exist and
do quite well – over 40 years of experience!

• Yet, we don’t really understand how to use
optimizations – in some sense, we are lucky

Source
Program

Binary
Program

Front-end Optimizations Code Gen.

Page 2

Using Optimizations

• Using optimizations
– Degrade performance in some situations – where to apply?
– Impact by disabling and enabling opportunities – what order?
– Parameters lead to wide variance – how to configure?

• Why now?
– Embedded systems use high-level languages
– Dynamic optimization useful, but cost is very high
– Performance improvements are shrinking

• Our Goal: Look for new opportunities and
develop more effective ways to apply
optimizations

Continuous Compilation

• Apply optimizations both statically at compile-
time and dynamically at run-time with
optimization planning at compile-time

• Plan for both static and dynamic optimizations
– Understand properties of existing optimizations
– Efficacy of both static and dynamic optimizations

• Determine where to apply optimizations, which
ones to apply, the order in which to apply them,
and their parameters

Page 3

Continuous Compilation

Static Compilation
(using profiles,

estimation models)

Phase 1

Static Compilation
(using profiles,

estimation models)

Phase 1

Program Execution
and Dynamic

Optimization (using
monitor and

optimization plans)

Phase 2

Program Execution
and Dynamic

Optimization (using
monitor and

optimization plans)

Phase 2

Off-line Adaptation
and Refinement of

Monitor and
Optimization Plans

Phase 3

Off-line Adaptation
and Refinement of

Monitor and
Optimization Plans

Phase 3

Recompilation and
Regeneration of

Monitor and
Optimization Plans

Phase 4

Recompilation and
Regeneration of

Monitor and
Optimization Plans

Phase 4

As time passes, the continuous compiler moves through phases, possibly revisiting earlier ones.

Target applications: Long running programs that have different
phases of execution.

Prediction &
Planning

Dynamic
Optimization

CoCo Architecture

Dy namic
Optimizer and

SDT

Monitor

Continuous
State

Monitor
Plans

Opt.
Plans

Program

A
pp

lic
at

io
n

In
fo

rm
at

io
n

R
ep

os
ito

ry

Application

Static Compiler Dynamic Compiler

Prof ilesProgram
Models

Static Optimizer

Planner

M
ac

hi
ne

 a
nd

O
pt

im
iz

at
io

n
In

fo
rm

at
io

n
R

ep
os

ito
ry

Estimation
Models

Machine
Models

Conductor

Debugger

Checker

Checker

Page 4

Prediction of Profit and Cost

• Predict the impact and costs of optimization
• With estimates of benefit and penalty, answer the

questions:
– Where and what optimizations to apply?
– In what order to apply?
– What optimization parameters?

Code Predict
Impact

Apply

Don’t
Apply

Beneficial

Not Beneficial

Challenges

• Performance varies widely, based on
– Code context (e.g., loop trip count)
– Parameters of optimizations (e.g. loop unrolling factor)
– Machine configurations (e.g. cache configuration)
– The order of optimizations

• Many resources impact overall performance
– Cache configuration
– Instruction scheduling rules
– Register numbers and types

• Thus, depends on: Code, optimizations, & machine

Page 5

Traditional Approach
• Usually, applied in an ad hoc fashion

• Heuristics to guide when to apply
– E.g., Always apply if applicable
– E.g., Apply if enough registers available

• Predetermined order to apply optimizations
– Certain orders just “make sense”
– Compiler writer’s experience

• Fixed configurations [Triantafyllis03]
• Analytic/experimental for loop opt. [Chen05, Yotov03,

Ding03, Wolf91, Sarkar97, McKinley96, Hu02, Zhao03, …]

⇒ Missed opportunities, bad decisions, limited to
certain optimizations, tuning, etc.

Our Approach

• Build and develop analytic models to predict
profit/penalty, without actually applying the
optimization

– Need models of particular optimizations
– Need models of the code
– Need models of the resources that are effected

• Based on models, make decisions about how to
apply optimizations

– We don’t need accurate models, just the trend needs to be
accurate enough to do the estimates

Page 6

FPO: Framework for Predicting
Optimizations

Source Code

Code

Optimizations

...

Resources

...

FPO: a Framework, consisting of models, for Predicting the
impact of Optimizations

Models for both scalar opts [CGO’05] and loop opts [LCTES’03]

Prediction
...

Plug ‘n Play Models
1. Extract code context
2. Model effect of the

optimization
3. Model effect on the

machine resources

Code Model

Source Code

Code

Optimizations

...

Resources

... Prediction
...

Express code characteristics relevant to opt. and resources

Automatically constructed from program
Abstracts only relevant details – it is not an intermediate rep.

Example Characterisics
Iteration space
References
Register pressure
Computation

Page 7

Optimization Model

Source Code

Code

Optimizations

...

Resources

... Prediction
...

Model how optimization transforms code model

Describes optimization semantics – how the code model is
affected by the predicted application of the optimization

Example Characterisics
Effect on Iteration space
Code edits due to opt.
Computation changes

Resource Model

Source Code

Code

Optimizations

...

Resources

... Prediction
...

How the code model effects machine resources

What machine resources are available & abstract only details
impacted by the code (and optimization) model

Example Characterisics
Num. registers & types
Computation latencies
Cache/memory hierarchy

Page 8

Predicted Optimization Profit

Source Code

Code

Optimizations

...

Resources

... Prediction
...

Compare transformed & non-transformed code

Prediction of the profit (or penalty) is the difference between
unoptimized and optimized

Example Characterisics
Cache misses inc./dec.
Register spills inc./dec.
Reduction in computation

FPO: Scalar Optimizations

• Transformations that operate on scalar code
– E.g., constant propagation, dead code elimination, partial

redundancy elimination

• Can have several impacts
– Reduce amount of computation
– Change register pressure (for the better or for the worse!)
– May change memory referencing pattern and cache behavior

• FPO (initially) considers
– Affect on computation
– How register pressure helps or hurts spills and reloads

Page 9

4 hardware registers – no spill

LIVE RANGES

1
2
3
4
5
6
7
8

a
b

c

d
f

g

v

BB4

CODE

1: a 1
2: b 2

3: c a * b
3: v a * b

3’: c v

4: c 1
4’: v a * b

5: d c + 1
6: f d + c
7: g f + d
8: h a * b

8: h v

1

32

4

Partial Redundancy Elimination

4 hardware registers – one spillVariables a, b are used later 4 hardware registers – no spill

Code Model

(before PRE)

1: IN ()

OUT (a, b)

2: IN (a, b)

OUT (a, b, c)

3: IN (a, b)

OUT (a, b, c)

4: IN (c, a, b)

OUT(…)

Code Model

(after PRE)

1: IN ()

OUT (a, b)

2: IN (a, b)

OUT (c, v)

3: IN (a, b)

OUT (c, v)

4: IN (c, v)

OUT(…)

Predicting the Profit of PRE

PRE OPT Model

Framework for Predicting Optimizations

(“Prediction Engine”)

Profitability = Register profit + Computation profit (not shown)

Resource Model
(regs)

OPT Model for register
allocation

Profit Prediction

CODE

1: a 1
2: b 2

3: c a * b 4: c 1

5: d c + 1
6: f d + c
7: g f + d
8: h a * b

1

32

4

CODE

1: a 1
2: b 2

4: c 1
4’: v a * b

5: d c + 1
6: f d + c
7: g f + d
8: h a * b

8: h v

1

32

4

3: c a * b
3: v a * b

3’: c v Code Edits Made

Code Model Update

Rules describe based on
the code edits how to

update live ranges

PRE Code Changes

Describes code edits
made to apply PRE

Page 10

PRE Optimization Model
• Describes semantic affects as code edits

IF partial redundant expression exp:
T = exp is partially redundant at [Block Bs, Statement Ss]
move exp to [Bd, Sd] & assign temporary V;
T1 at [Ba1,Sa1] ... Tn at [Ban,San] are redundant

THEN
step 1: <Ins exp USE [Bd,Sd]>, <Ins V DEF [Bd,Sd]>
step 2: <Del exp USE [Bs,Ss]>, <Ins V USE [Bs,Ss]>
step 3: forall Ti at [Bai,Sai]:

<Del Ti DEF[Bai,Sai]>, <Ins V DEF [Bai,Sai]>
<Ins Ti DEF[Bai+1,Sai+1], <Ins V USE [Bai+1,Sai+1]>

Moves expression
to a new location

Delete expression;
insert copy (V) at
this location

Replace redundant destination (D) with temporary V
& insert a copy to original destination (e.g., D=V)Opt. edits [Whitfield97]

EDITS FROM PRE OPT MODEL

Block 3 (from Step 1)

Ins a USE, Ins b USE, Ins v DEF

Block 4 (from Step 2)

Del h DEF, Del a USE, Del b USE

Ins v USE, Ins h DEF

Block 2 (from Step 3)

Del c DEF, Ins v DEF

Ins v USE, Ins c DEF

CODE

1: a 1
2: b 2

3: c a * b
3: v a * b

3’: c v

4: c 1
4’: v a * b

5: d c + 1
6: f d + c
7: g f + d
8: h a * b

8: h v

1

32

4

PRE Opt. Model Determines Edits

Page 11

• For registers, edits affect the live ranges
• Rules determine how to update live ranges

Code Change
Insert a use u of variable v in block B at statement s

Code Model Update
if v is live at post-s: no change;
else if there is a use or definition before s in block B:

no change to global code model; record local change
else

add v to IN(B) and all reachable predecessors of B;

Incremental Code Model Update

A code edit on a
variable use or def

How to update the
live ranges

Incremental data flow [Pollock89]

CODE MODEL -- LIVE RANGESEDITS FROM PRE OPT MODEL

Block 3

Ins a USE, Ins b USE, Ins v DEF

Block 4

Del h DEF, Del a USE, Del b USE

Ins v USE, Ins h DEF

Block 2

Del c DEF, Ins v DEF

Ins v USE, Ins c DEF

Edits Determine Code Model Update

1
2
3
4
5
6
7
8

a
b

c

d
f

g

v

BB4

Page 12

Selectively
apply

optimizations

Source Code Code

Optimizations

...

Resources

...

...

Choose
most beneficial
optimizations

Search
best order

or configuration

Combine
optimizations

Using FPO for Optimization Planning

Predictions
Opt. Planners

Traditional Approach:
Selectively Applying Optimizations

• How do you pick the threshold?
• Is same threshold always appropriate?
• Different heuristics for different optimizations?

Program

Optimizer
O1: H1
O2: H2

Opt. Prog.

Heuristic guides optimization

E.g., “register live range heuristic”
If O increases live ranges > threshold,

then don’t apply O
otherwise,

apply O

E.g., Register pressure sensitive PRE [Gupta99]

Page 13

FPO Approach:
Selectively Applying Optimizations

• Optimizer queries planner whether to apply an
optimization, when it’s applicable

• Planner consults models to determine the profit
of the optimization in that context

• If optimization is profitable, planner says “yes”.
Otherwise, says “No”

Selective
Planner

ModelsProfilesProgram

O applicable, should apply?

Optimizer Yes or No

Opt. Prog.

Experimental Results

Experiments
• Model accuracy
• Heuristic approach when applying a single opt
• Selective planner when applying a single opt

Setup
• Benchmarks: SPEC2K, MiBench, MediaBench
• Platform

– MachSUIF compiler, implemented models & optimizations
– x86 AMD Athlon 1.4 GHz, 2 GB memory, RedHat Linux

• PRE and LICM (have done others)

Page 14

PRE & LICM Model Accuracy

88.7030634591.12433475twolf

89.77798878.574456bzip2

87.5730334681.13431530vortex

90.67687587.87210293parser

82.69435286.274451mcf

94.3521723096.04291303vpr

84.44384589.584348gzip

%AccacyCPTP%AccacyCPTP

LICMPRE
Benchmark

Correct predictions: Did model predict same as actual execution runs

PRE & LICM with Heuristic

1.912.140.380.520.021.140.881.07twolf
4.576.707.357.027.918.197.527.35bzip2
5.284.995.694.883.864.665.254.73vortex
2.231.992.862.551.351.701.501.25parser
2.472.582.622.502.222.312.352.37mcf
0.690.52-0.38-0.401.831.810.751.22vpr
3.275.403.292.904.103.783.753.50gzip

1684016840

Heuristic-driven LICMHeuristic-driven PRE

Benchmark

Best performance
Results are percentage improvement

Page 15

PRE Heuristic vs. Selective Planner

0

2

4

6

8

10

gzip vpr mcf parser vortex bzip2 twolf geomean

Pe
rfo

rm
an

ce
 Im

pr
ov

em
en

t %

A-PRE Best-heuristic Heuristic-8 P-PRE

LICM has a similar trend (geomean of P-LICM better than Best-heuristic)

Planning for Optimization Order

• Can treat as a search problem: Many orders possible, but
which is the best?

Adaptive optimization: Change order to fit context
1) Iterative compilation [Knijnenburg03]

– Try an order, run it, feedback, try again

2) Genetic algorithm [Cooper99], [Almagor04], [Kulkarni04]
– Try many orders, select fittest, try again

• Many granularities: Whole program, function, code region

Page 16

Adaptive Optimization

GAS1,S2,…S1,S2,…

Adaptive
Optimizer

Time
Programs

Program

Initial population of
optimization orders

Programs compiled with
given optimization orders

Cooper [LCTES 1999], Almagor [LCTES 2004], Kulkarni [PLDI 2004]

“Scores” of how well
each sequence did

S1’,S2’,…S1’,S2’,…

P1,P2,…P1,P2,…

New population

Using FPO for Adaptive Optimization

GA

Adaptive
Optimizer

Predict
Profit

Program

New population

Selective
Planner

Selectively apply optimizations over
some code granularity (module, function)

Running a program
replaced by profit
predictionInitial population of

optimization orders

S1,S2,…S1,S2,…

S1’,S2’,…S1’,S2’,…

CM1,CM2,
…

CM1,CM2,
…

Page 17

Experimental Results

• Scalar optimizations
– Global value numbering (G), Constant propagation (C), Copy

propagation (O), Constant folding (N), PRE (P), LICM (L),
Register allocation (graph coloring) (R), dead code elimination (D)

• Fixed sequence: GOCDPOLOD [Whitfield97]
• GA based on [Almagor04]
• 10 generations, 20 sequences per generation

– Initial sequence is fixed order sequence
– 10% best sequences survive each generation, remaining formed

by crossover operation and character-by-character with 5%
mutation rate

– Past sequence results are hashed to avoid re-evaluating
– Optimization orders determined on module level

Run-Time Performance

0

5

10

15

20

bitcnt dijkstra FFT adpcm mpeg gzip mcf parser bzip2

%
 Im

pr
ov

em
en

t

Fixed Experimental FPO

MiBench MediaBench SPEC2K

Page 18

Compile-Time

0

5

10

15

20

25

30

35

40

45

bitcnt dijkstra FFT adpcm mpeg gzip mcf parser bzip2

C
om

pi
le

 T
im

e
(H

ou
rs

)
Experimental FPO

46.1 55.6

MiBench MediaBench SPEC2K

Slide 40

CoCo Architecture

Dy namic
Optimizer and

SDT

Monitor

Continuous
State

Monitor
Plans

Opt.
Plans

Program

A
pp

lic
at

io
n

In
fo

rm
at

io
n

R
ep

os
ito

ry

Application

Static Compiler Dynamic Compiler

Prof ilesProgram
Models

Static Optimizer

Planner

M
ac

hi
ne

 a
nd

O
pt

im
iz

at
io

n
In

fo
rm

at
io

n
R

ep
os

ito
ry

Estimation
Models

Machine
Models

Conductor

Debugger

Checker

Checker

Page 19

CoCo Run-Time System

Application Binary

CPU

Dynamic Translator
OS

• Based on Software Dynamic
Translation

• Layer of software between application
binary and the OS/CPU.

• Application’s instructions are
examined and modified before being
executed on the CPU.

• Uses include binary translation,
dynamic optimization, & others

CoCo Run-Time System

• Strata toolkit [CGO’03,’05 Tutorial]
– Application’s instructions are examined

and modified before being executed.
– Reconfigurable & retargetable
– Low overhead translation

• Provides functionality for run-time
translation & optimization

– Multithreading & interrupt handling
– Memory management
– Translated code caching
– Code analysis

Targets: MIPS/Irix, SPARC/Solaris, x86/Linux, MIPS/PS2, PPC/MacOS
Apps: Code compression [DATE’04], self managing systems [WOSS’04],

distributed execution [VEE’05], architecture simulation, program profiling

Application Binary

Operating System

CPU

Context
Capture

New
PC

Context
Switch

Cached? New
Fragment

Fetch

Decode

Translate

Next PC

Dynamic Translator

Finished?

Page 20

Strata SDT Toolkit

• Efficient translated code [CGO’03,IJPP]
– Fragment linking, partial call inlining, fast returns, indirect branch

translation caching, instruction trace formation
– SPARC: 22.9x (no transformations) to 1.3x (with transformations)
– Strata-x86: 1.3x vs. Dynamo/RIO [Bruening’03] 1.2x

• Program instrumentation [ICSE’05,WOSS’04,Traces’03]
– Reduce amount of instrumentation inserted
– Reduce the cost of an individual piece of instrumentation code
– 1.26x-2.63x speedup over no instr. optimization for several profilers
– ATOM [Srivastava’94], FIT [De Bus’04], Pin [Tutorial ASPLOS’04]

• Source-level debugging of dynamically translated code
– Algorithms to track dynamic translations & map to source code
– Integrated GDB and Strata – very efficient:1.4x to 2.1x & < 1.6 MB

Summary

• Planning-based approach to compilation
– Understanding profitability property
– Models do work! Can successfully guide optimizer
– Making adaptive optimization feasible

• Dynamic translation
– Strata dynamic translator [CGO’03, IJPP & CGO’05 tutorial]
– Dynamic instrumentation & monitoring [ICSE’05, WOSS’04]
– Dynamic instrumentation optimization
– Debugging dynamically translated programs

Page 21

childers@cs.pitt.edu

http://www.cs.pitt.edu/coco

More Information

