
MICHAEL P. MESNIER, MATTHEW WACHS, RAJA R.
SAMBASIVAN, JULIO LOPEZ,

JAMES HENDRICKS, GREGORY R. GANGER, DAVID
O’HALLARON

CARNEGIE MELLON UNIVERSITY

//TRACE: Parallel trace replay
with approximate causal events

Introduction

 Extract/replay parallel applications to recreate I/O
behaviour.

 Discover inter-node data dependencies, inter-I/O
compute times per node

 Mimic application behaviour across storage systems

//TRACE

 Black box – no modification to app/storage system
 Library calls interposed/delayed (LD_PRELOAD) by tracing

engine

 Application executed multiple times with artificial
delays in “throttled” node
 Exposes data dependencies

 Execution manager
 different node throttled on each execution

 Post processing tools – merge traces from multiple
runs

High level View

Trace replay models

 Closed model
 I/O arrivals are dependent upon I/O completions
 Replay rate determined by think (compute + sync) time and

service time of I/O
 Replay rate dependent on storage system

 Open model
 Replay rate unaffected by storage system

Synchronization
and I/O

I/O is only a fraction of
total running time

Wait time depends
upon storage system

Design requirements

 adjust with the speed of the storage system
 traces must be replayed with a closed model.

 enforce data dependencies
 annotated with the inter-node synchronization calls.

 model computation
 the inter-I/O compute time reflected in the traces.

 evaluate different file systems
 the traces must be file-level traces,

I/O throttling

 Slow down I/O , wait till other nodes exit or block
 Detect whether other nodes are blocked based on

CPU, I/O activity
 throttling node adds a SIGNAL() to its trace
 blocking node adds a WAIT()

 I/O Sampling, Node sampling
 Trade-off between accuracy and tracing time

Discover compute time

 Approach 1: Sync time is zero for throttled node.
 Compute time = think time
 I/O Sampling can affect calculation

 Approach 2: record time of library/system calls (sync
time)
 Not applicable for “untraceable” synchronization (e.g shared

memory)
 No throttling required
 Unaffected by sampling

* assumption: I/O synchronous in a thread

Detailed design (contd)

 Causality engine
 Throttled mode – exactly one node in this mode
 Unthrottled mode
 Intercepts and stores computation + signaling/waiting

information
 COMPUTE <seconds>
 I/O op args
 SIGNAL/WAIT info (as per sampling period)

 Delay I/O – RPC sent to watchdog task on unthrottled node
 Resume I/O on receiving message from each watchdog

Detailed design (contd)

 When is a node blocked?
 Watchdog checks with causality engine if the node is in

computation or synchronization
 Determine time spent in synchronization system call
 Considered blocked if time spent exceeds a predetermined

maximum
 System call time is recorded on previous run and increased by a

few factors
 Too small ‘maximum’ can lead to error
 Too big ‘maximum’ increases tracing time

Trace Replay

 Preparing for replay
 After m runs – m traces must be merged
 After merge, each I/O has

 m - 1 preceding WAIT() calls
 m – 1 succeeding SIGNAL() calls
 one COMPUTE() call

 Replay is straightforward
 file operations replayed as-is on dummy files
 synchronization – MPI, Java, CORBA
 computation – spinning rather than sleeping (induce CPU

load)

Baseline for comparison

 as fast as possible (AFAP) replay
 ignore think time

 replay think time (think limited)
 more accurate than AFAP

 timing-accurate
 has identical running time to the application
 Running time fixed – independent of storage system

 Replay accuracy measure
 (AppTime – ReplayTime) * 100 / AppTime

Evaluation

 Hypothesis 1
 Data dependencies and computation must be independently

modeled during replay, otherwise the replay may differ from the
traced application.

 Hypothesis 2
 By throttling every node and delaying every I/O, the I/O

dependencies and compute time can be discovered and accurately
replayed.

 Hypothesis 3
 Not every I/O necessarily needs to be delayed in order to achieve

good replay accuracy. (I/O sampling)
 Hypothesis 4

 Not every node necessarily needs to be throttled in order to achieve
good replay accuracy. (node sampling)

Experiment

 Experiment 1 (Hypothesis 1)
 think-limited vs. application.

 think limited assumes a fixed synchronization time,
 We expect high replay error for an application with significant

synchronization time
 Experiment 2 (Hypothesis 2)

 uses the causality engine to create annotated I/O traces. The traces
are replayed and compared against think-limited.

 Experiment 3 (Hypothesis 3)
 uses I/O sampling to explore the trade-off between tracing time and

replay accuracy.
 Experiment 4 (Hypothesis 4)

 uses node sampling to illustrate that not all nodes necessarily need to
be throttled in order to achieve a good replay accuracy.

Setup

 VendorA
 14-disk (400GB 7K RPM Hitachi Deskstar SATA) RAID-50

array with 1GB of RAM;

 VendorB
 6-disk (250GB 7K RPM Seagate Barracuda SATA) RAID-0

with 512 MB of RAM; and

 VendorC
 8-disk (250GB 7K RPM Seagate Barracuda SATA) RAID-10

with 512 MB of RAM

Benchmarks

 Pseudo
 simulates checkpointing of a large-scale computation
 N processes write a checkpoint file (with interleaved access),

synchronize, and then read back the file
 Pseudo : without any flags specified (),
 PseudoSync : barrier synchronization after every write I/O
 PseudoSyncDat2 : sync + computation between every I/O

 Fitness
 nodes write to file one after the other

 Quake –
 computation is interleaved with the I/O, and the state of the

simulated region is periodically written to disk by all nodes

Think-limited
(Experiment 1)

Fixed amount of think
time between I/O

Pseudo has little
synchronization, best
result

PseudoSync
PseudoSyncDat affected
due to synchronization.
Computation affects
result

Fitness – worst affected
if synchronization
ignored

I/O throttling(Experiment 2)

•substantial gain for PseudoSync/Dat , Fitness, Quake(due to replayed
synchronization)
•Pseudo not affected as much due to lack of data dependencies

I/O sampling (Experiment 3)

 Pseudo, Fitness – few data dependencies
 higher sampling rate discovers more data

dependencies

% err in
runtime

Experiment 4
(Node
sampling)

low replay error can be
achieved without having
to throttle every node

As with I/O sampling,
one can sample nodes
iteratively until a
desired accuracy is
achieved

heuristics for intelligent
node sampling are
required to more
effectively guide the
trace collection process
and further reduce
tracing time

Conclusion

 presents a technique for accurately extracting and
replaying I/O traces from parallel applications

 By selectively delaying I/O while tracing an
application, computation time and inter-node
dependencies can be discovered and approximated
in trace annotations

 average replay error is below 6%.

