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architectural design, power,
security, reliability

Q Optimizing compiler

(with architecture co-design)

G Goal:

1. Improve performance
2. Satisfy constraints




Topic

Compiler Optimizations

g
Compiler Optimizations +

Architectural Support

-

Compiler Optimizations for
Security, Secure Architecture

Others
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PLDI-06, PLDI-04, PACT-03, PACT-02,

LCTES-06, LCTES-03, ACM TECSX2,
ICDCS-03

PLDI-05, ACM TOPLAS, LCTES-04,

ACM TECS, LCTES-04, IPDPS-06

ASPLOS-04, MICRO-06,
CASES-04 Best Paper, CGO-06,
CGO-05, CASES-05

INFOCOM-06, IPDPS-02,
IEEE TPDS, IEEE TOC, ICPP-03




Motivation

@ Domain specific multicore processors
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@ For special applications

@ Specialized, simplified hardware

@ Complexity pushed to the compiler
@ Thread level parallelism

@ Examples
@ CELL—1 PPE+8 SPUs
@ Intel’s 80 core teraflop processor

o Cradle CT3616—16 DSPs+8 GPPs [1#*

@ ClearSpeed CSX600—96 cores
@ Intel IXP
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The IXP Processor Model

SRAM I

L

SDRAMI
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ARM
core

core i

core i

core i core i core i
core i




Packet Processing Core

register register

L

bank A bank B

@ No OS, hardware
manages threads

I CPU | Thread 1i @ ALU Instructions can
Thread 2 finish in 1 cycle
) Thread n

latency (30~400 cycles)

code * @ No cache, long memory
store

@ Two banks of registers

MMU @ Fast context switch
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Compiler Challenges

@ Code

ust be highly efficient (1Gb/s => 400 cycle/packet)

@ Architectural constraint—register usage

@ Lar
@ Me
@ Fur
@ Thr

@ Servic

rcmnstraim:nm?nvﬂgh registers

ge register file is slow and expensive

mory latency is long

1ctions are often inlined

eads simultaneously active->cannot shared registers

e constraint—no OS available
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Register Allocation Preliminaries

@ GOAL: putvariables to registers for faster access

@ Several variables could be put in the same register if they

A

are active in different places

@ Some variables might be put in memory (SPILL) when
registers are used up

@ OUTPUT: for each variable, which register or memory
location it should be allocated to

11
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Dual-bank Register Constraint

@ Dual-bank Constraint
@ Only for ALU instructions
@ Two source operands must come from different banks
@ Fetching operands in parallel allows 1 cycle latency for

AI II :I/'\f\ IFIIA If\lﬂf\

al ALU TT1otrucuvulito

c=a-+b

a = pank A, b = bank B
OR

a —=bank B, b = bank A

12




<lll
L

Two Issues with Dual-bank
Register Assignment

Example 1 Example 2

a=a+b b=a+b

c=a+c c=atC

d=b+c (i? d=a+d
Q)

a — Bank A a —> Bank A

b = Bank B b = Eantg
c = 7 “ 8 zi ngkB e“
alany

Eﬁﬂm@mg mmﬁﬁﬁﬂmﬂ

@ Intel’s assembly tool leaves these problems to the user !




Register Conflict Graph (RCG)

L

Register Conflict Graph (RCG)

@ Each variable is a node on the graph

Q@ Iftwo
one Al
EDGE

sariables appear as SOURCE OPERANDS in at least

_U instruction, they are connected with a CONFLICT

U

The two end nodes of a conflict edge
should be in different banks

14




Register Conflict Graph (RCG)—
Examples

Example 1 Example 2
a=a+b b=a+b
c=a+c c=a+c
d=b+c d=a+d

@ RCG @ RCG

7 N\
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No-Conflict Law

No-Conflict L aw:

RCG is conflictless iff RCG is bipartite iff No odd-length cycles

Example 1
Bank A Bank B
® jo
[ Bank A
Conflict
o) St ™ G o) ot
I
Example 2 group A i group B
I
I
Bank A <{— : —@ —> Bank B
I
I
I
| E 2 16




Detect Odd Cycles up to

Certal

Length

RCG breadth-first search tree
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@ Parallel
@ A level |

@ Each nc

Edge: edge between two nodes at the same level

< parallel edge=>there is odd cycle of length up to 2k+1

)de should be aroot once; complexity: O( |[N|x(|N|+|E]) )

17




Break Odd Cycles with
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Variable Splitting

coae

RCG

@ Inserting MOV can split
“A” and break the cycle

18
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In-place Bank Exchange

@ Require extraregisters, which may not be available.

@ Our approaches:

@ If no register, try to free one through rematerialization
@ Last resort: in-place bank exchange

—a A —n

= RAL Op KA

1=-RA1 ® RB
B— RAlorlg,\ B =RA1®RB

= RB op RA2
RB = RA1® RB

RA1= RA1 ® RB

———= RA1=RAl,; ® RB,;

———= RA1=RAl_ .. ®RB,_.,; RB=RAl

orig orig? orig;

———= RA1=RAl_ .. ®RB_..; RB=RB

orig orig’ orlg’

———>= RA1=RAl_..; RB=RB

orig? orig;

19




Breaking Odd Cycles

@ Breaking odd cycles with minimal cost is very expensive
(NP-complete)

@ ILP solver—long compilation time

@ A heuristic solution that gives good results quickly
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Odd C

ycle Breaking

store all
splitting patterns to
Pattern_set

7 N
Build breadth-first

search tree, put all

lodd cycles with length

K to Cycle_set

Inner-loop: k
odd-cycle with
heuristic

Outer-loop:
all odd-cycle
short to I

reak all
1 length K
ally

break

s from
ong

- )
Find a pattern which
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breaks m cycles with
cost w and m/w is
maximal
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Bank Imbalance

RCG (bipartite graph)

group A group B

RCG
®
O O
© © dd cycle breaki AN/
\\ // odd cycle rfa ing o o
AN O | >
O O
O .
o0 0000 O0CO O \E/ \C)/

Make |group A| = |group B|

22




Near-B

lancing

roughly balance the two groups, zero cost !

@ Each connected component must be bipartite !

RCG (bipartite graph)

onent 2 O\O
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group A group B
Connected /O ﬂ/ﬁ]\
Component1l O O O
N
Y
\O —> ~O
Connected o4 Lo
Comy — B

VA"



Solving the Balancing Problem

@ Suppose the RCG contains m connected components
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@ The complexity of a naive but optimal solution is O(2™M), since
each connected component could be “flipped” or “not flipped”

mall m =>exhaustive search O(2™M)

For large m =>an approximate algorithm for “subset sum”

@ Next, fully balance the two banks with a heuristic algorithm

24




Application of Algebraic Laws

calculate a+b+c

— | T~

t =a+b t =a+cC t =b+c

=t +C =t .l_h =t +a

@
O—0© O ©
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Compilation Flowchart

IXP Assembly Code

J
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Our Renictar Allnecator
A4 A3 ~J VAR YD AYAYA.19YA |

a
giotc

ol I\

3

IXP Assembler and Linker

J

Machine Code




Comparison for Number of Spills

(Memory Accesses)
O O

R

@ 70% reduction
@ Completely avoid spills for 5 benchmarks
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Speed

up

%
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@ Average
@ Compile

2 speedup: 20% purely through compiler optimizations
aition time within a few seconds on a Pentium 4 machine

28




Contri

@ Tackled several hard problems with good, fast solutions

outions
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@ Achieved 20% speedup through compiler optimizations

@ First ¢

ompiler solution to overcome the dual bank constraint

@ Published in PACT-03. This work was later integrated into

Intel’s

new compiler

29
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Lightweight Context Switch

thread 1 thread 2
B=4 Read Y
Cctx
Read C W=X-Y
D=A+B

Hu
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@ Context switch only happens for long latency instructions,
highly frequent — every 20 cycles

@ Thread execution is non-preemptive, predictable; threads are
simultaneously active

1 cycle context switch: only PC is saved




Reqgis

ter Sharing

with traditional context switch
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L Register File J‘
~ = - —”/

Vs Sexs™ sl v \
— g —
Thread| | Thread | | Thread | | Thread
1 2 3 4

private\\
=

with ligh&N&igRPE@REBXt switch

—

\

/.shared
v

SN NS

w V> XN¥
oY ehete A NN
Thread | | Thread | | Thread | | Thread
1 2 3 4
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What to Put in Shared Registers ?

L

Variables in shared registers must not be used
across context switches. Upon context switch,
they should already be dead i.e. unused.

—

!

Categorize variables into two types: those used
ICross context switches, and those are not;
Allocate them separately.

Q)

33




Non-S
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witch Region (NSR)--Commbench

BB1 sum=0

A 4

BB2 | |f (len<2) br BB6

read tmpl<[buf], 1 ctx_switch
sum+=tmpl&OxFFFF Ifl(len)-goto BB8
/ buf:buf+2P —
| ifl(sum&.0x80000000) BB/ o
br BB5 read tmp2<[buf],1
sum+=tmp2&0xFFFF
BB4 v
sum=(sum&0xFFFF) \» BBS
+(sum>>16) Ifl(sum>>16)br BB10
BB5 v BB9 .
len-=2 sum=(sum&O0xFFFF)
ctx_switch +(sum>>16)
goto BB2 goto BB8
v BB10
\/ return ~sum

34




Non-S

witch Region (NSR)--Commbench

BB1 sum=0

A 4

If (len<2) br BB6

/\

sum=+= fmn1 OxFEEE Ifl(lnn\ nnfn BBS

SRCSHIRA AT S0

buf= buf+2

Ifl(sum&0x80000000)

\ 4

sum=(sum&O0xFFFF)

br BB5
sum+= tmpZ&OxFFFF
BB4

+(sum>>16) f!(sum>>16)br BB10
BB5 —
len-=2 sum—(sum&OxFFFF)
K?%M +(sum>>16)
goto BB2 goto BB8
v BB10
\/ return ~sum
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Non-Switch Region (NSR)--Commbench

BB1 sum=0

\ 4

If (len<2) br BB6

/ \ BB6

ctx_switch
i e g N P e i N N NN
/ sum+=tmpl&OxFFFF If!(len) goto BB8
buf=buf+2
| ifl(SUM&0Xx80000000) BB7 o
br BB5 AN

read tmp2<[buf],1
BB4 v
sum=(sum&OxFFFF) sum+=tmp2&0xFFFF

+(sum>>16) \, BB8
BB5 l Ifi(sum>>16)br BB10
len-=2 BBY -

P e i S N N

ctx switch sum=(sum&OxFFFF)
N N +(sum>>16)
| goto BB2 goto BBS

v BB1O
return ~sum




Non-S

witch Region (NSR)--Commbench

BB1 sum=0
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A 4

If (len<2) br BB6

553 ‘////////

I/\/\/\/\/\/\I I/\/\/\/\/\/\I
read tmpl<[buf], 1 ctx_switch
e e U N TN T T T
/ sum+=tmpl&OxXFFFF Ifl(len) goto BB8
buf=buf+2
/ ifl(SUM&0Xx80000000) BB7 o
read tmp2<[buf],1
BB4 v p2<lbul
sum=(sum&O0xFFFF) sum+=tmp2&0xFFFF
+(sum>>16)
l T, BB8
IBB5 . ( Ifi(sum>>16)br BB10
en-=
ctx_switch

goto BB2

"

goto BB8

sum=(sum&O0xFFFF)
+(sum>>16)

v BB10

return ~sum
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Non-Switch Region (NSR)--Commbench

Each Connected Component Form a NSR

BBl | sum=0
I NSR1

I\
If (len<2) br BB6

|

N ||, N

=

read tmpl<[buf], 1 ctx_switch

/ sum+=tmpl&OxXFFFF Ifl(len) goto BB8
buf=buf+2

NS DL if(sum&0x80000000) BB/ / .
INOIMZ br BB5 “ ”
read tmp2<[buf],1
BB4 v p2<lbul] N S R 3
sum=(sum&O0xFFFF) sum+=tmp2&0xFFFF
+(sum>>16)
l T, BB8

IBB5 . ( Ifi(sum>>16)br BB10
en-=

ctx_switch sum=(sum&O0xFFFF)
+(sum>>16)
|'goto BB2 1 goto BB8

v BB10
\/ return ~sum

38




Variab

le Classification

BB1

sum:IO
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If (le}<2

iff(sgm40xB0O000000)

read tmp2<[buf],1

um+:tmp2<|¢OxFFFF

\ BB8

Ifl(sum=>46)br BB10
BB9 —
sum=(sumgOxFFFF)
+(suph>>16)
goto BB8
BB10
return ~su

39




Inter-t

nread Register Management

[

L

Let all PR=MaxPR and all SR=MaxSR|

L

/

.

Reduce

Max(SR1,SR2...)
by 1 if possible

\

J

{

[ Intra-thd RA]

4

Y
W :{>[ Finish ]
//N N N
NN
Reduce [ Reduce
PR1 by PR2DY | | iiieennnns
1if 1if
possible possible
\ ), —__

il

[Intra thd RA Intra thd RA]

SN

\y

4

[ commit the one that
| Incurs min total cost
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Regist

er Pressure Reduction

| O

<lll

@ Fourt
@ 24% s

hhﬁﬂ 1

hreads with identical code
aving on the number of registers needed
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Speed

up
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%

@ 128 pl
@ Speed
@ Avera

1ysical registers
lup up to 29%
ge 20%

42



Contributions

@ Partially sharing registers among threads alleviates
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registers shortage

@ Combined with intra-thread allocation, it gives us around

@ Published in PLDI-04, later integrated into Intel’s new
compiler

& Our recent work on IPDPS-06 adds hardware modifications
to achieve more sharing

43
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Motivation

@ CPU cycle wastage (20-30%) due to unnecessary stalls

@ Need for better CPU sharing, some threads take more CPU

due to less long latency instructions

@ Real-time scheduling, packet scheduling

45
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Example — Weighted Round Robin
thread 1 thread 2 thread 1 thread 2
Inst 1.1 Inst 2.1 Inst 1.1 Inst 2.1
Inst 1.2 Inst 2.2 Inst 1.2 Inst 2.2
Inst 1.3 Inst 2.3 ctx Inst 2.3
Inst 1.4 Inst 2.4 Inst 1.3 ctX
Inst 1.5 Inst 2.5 |—'> Inst 1.4 Inst 2.4
Inst- 1.6 Inst 2.6 ‘ ctXx Inst 2.5

Inst 1.5 Inst 2.6
Inst 1.6 ctX
Cctx
weight=2  weight=3 weight=2  weight=3
1.1 |11.2 | ctx “ 2122|123 |ctx | 1.3 |14 |ctx “ 24125126

46




Main Results

Category Constraint Approach
I CPU Scheduling (Weighted) Round Robin—(W)RR FCS

Priority Sharing—PS FCS
Real-time Scheduling Rate Monotonic—RM FCS

Earliest Deadline First—EDF DCS
B Packet Scheduling Priority Class—PC FCS
First Come First Serve—FCFS DCS
(Weighted)Fair Queueing—(W)FQ FCS

@ Up to 2% slowdown
@ Code growth <5%

@ Eliminate unnecessary stalls, 20-30% improvement on CPU
utilization

l [
1
<lll
"Il
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Other

@ Paralle

Compiler Work

lize load/store instructions [PACT-02] journal version

e — g~
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[ACM ™~

TECS]

@ Auto addressing mode [LCTES-03]

—@ Manag

@ Lower
TECS]

e hidden registers on ARM [LCTES-04]

power prefetching [LCTES-04], journal version [ACM
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Other

@ Differe

Compiler Work

ntial encoding and register allocation [PLDI-05], journal
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version [ACM TOPLAS]

@ Compi
iIntensi

ler scheduling of mobile code in a distributed data
ve environment [I(‘D(‘Q ()?1

& Profile

-driven optimizations for server applications [PLDI-06]

@ Current project at IBM Research: speculative parallelization for

Blue G

ene/Q and Power 7
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Optimization for Security

@ Prevent information leakage through the address bus for
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secure processors [ASPLOS-04] [CASES-04 Best Paper]

@ Ad

dress bus information leakage is a severe problem

@ Propose two solutions to remedy it

@ Reduc
yh compiler/hardware approaches [CGO-06]

throug
@ Ap
@ Ap

e security overhead, improve security strength

ply to secret sharing [CGO-05]
ply to anomaly detection [MICRO-06] [CASES-05]
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Some

@ A high

Other Work

ly scalable priority queue [IEEE INFOCOM-06]
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@ Reduce cache pollution via prefetch filtering [ICPP-03],

oy e g g m— e e =)

journe

@ Low Iz
[IPDP

atency broadcasting in massive parallel computers
S-02], journal version [IEEE TPDS]
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Multic

The number of cores will double every 18 months, with
256-core systems commonplace by 2011
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—Anant Agarwal, MIT

@ Program partitioning, speculative parallelization

@ Aggr
comp

@ On-ch

@ Comp

ssive speculatiot
lation versions

Ip memory organization and data layout optimizations

iler scheduling for power and temperature management

.
' Y \AL)
'

ultiple parameterized
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Specialization

@ Applications in special domains: multimedia, scientific

computing, simulation, physics, chemistry, bio-informatics
@ Specially designed hardware
@ Heterogeneous multicore

@ Hybrid optimization according to runtime conditions
@ Compiler generates rough optimization strategies
@ Runtime system fills in the details
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Security

@ Automatic patch generation for large-scale zero-day worms
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@ Record forensic data w/ hardware support
@ Compiler analysis for worm code and system source code
@ Generate the patch automatically

@ Compiler/architectural approaches for fast identification of
malicious inputs
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Questions & Answers

That's All Folks'!
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