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Overview of Research

Goal: 
1. Improve performance
2. Satisfy constraints

Optimizing compiler

(with architecture co-design)

Constraints:                   
architectural design, power, 

security, reliability 



4

Topics

Compiler Optimizations
PLDI-06, PLDI-04, PACT-03, PACT-02,
LCTES-06, LCTES-03, ACM TECSx2,

ICDCS-03 

PLDI-05, ACM TOPLAS, LCTES-04,
ACM TECS, LCTES-04, IPDPS-06 

INFOCOM-06, IPDPS-02, 
IEEE TPDS, IEEE TOC, ICPP-03

Compiler Optimizations for 
Security, Secure Architecture

Compiler Optimizations + 
Architectural Support

ASPLOS-04, MICRO-06, 
CASES-04 Best Paper, CGO-06, 

CGO-05, CASES-05 

Others
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Domain specific multicore processors
For special applications
Specialized, simplified hardware
Complexity pushed to the compiler
Thread level parallelism

Examples
CELL—1 PPE+8 SPUs
Intel’s 80 core teraflop processor
Cradle CT3616—16 DSPs+8 GPPs
ClearSpeed CSX600—96 cores
Intel IXP

Motivation
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The IXP Processor Model

core

SRAM SDRAM

core

core core

core core

ARM
core
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Packet Processing Core

CPU

MMU

code
store

Thread 1
Thread 2

Thread n

register
bank A

register
bank B

No OS, hardware 
manages threads

ALU instructions can 
finish in 1 cycle

No cache, long memory 
latency (30~400 cycles)

Two banks of registers

Fast context switch
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Compiler Challenges

Code must be highly efficient  (1Gb/s => 400 cycle/packet)

Architectural constraint—register usage

Resource constraint—not enough registers
Large register file is slow and expensive
Memory latency is long
Functions are often inlined
Threads simultaneously activeÆcannot shared registers

Service constraint—no OS available
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Register Allocation Preliminaries

GOAL:   put variables to registers for faster access

Several variables could be put in the same register if they 
are active in different places

Some variables might be put in memory (SPILL) when 
registers are used up

OUTPUT: for each variable, which register or memory 
location it should be allocated to
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Dual-bank Register Constraint

Dual-bank Constraint
Only for ALU instructions 
Two source operands must come from different banks
Fetching operands in parallel allows 1 cycle latency for 
all ALU instructions

c =  a  +  b

a bbank A, bank B

a bbank B, bank A
OR
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Two Issues with Dual-bank 
Register Assignment

a Bank A
b Bank B
c Bank B
d Bank B

a=a+b

c=a+c

d=b+c

a Bank A
b Bank B
c ?

Example 1

b=a+b

c=a+c

d=a+d

Example 2

Intel’s assembly tool leaves these problems to the user !!
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Register Conflict Graph (RCG)

Register Conflict Graph (RCG)

Each variable is a node on the graph

If two variables appear as SOURCE OPERANDS in at least 
one ALU instruction, they are connected with a CONFLICT 
EDGE

The two end nodes of a conflict edge 
should be in different banks
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Register Conflict Graph (RCG)—
Examples

a=a+b

c=a+c

d=b+c

Example 1

b=a+b

c=a+c

d=a+d

Example 2

A

B

C

RCG

A

B

C

D

RCG
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No-Conflict Law

RCG is conflictless

No-Conflict Law:

A

B

C

D

A

B

C

Example 1

Example 2

No odd-length cyclesRCG is bipartite

Bank A

Bank B
A

B

C
Bank A

Bank B

ConflictConflict

group A group B

Bank A Bank B

iff iff
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A root

B C 1st level

E D 2nd level

A

B

C D

E

RCG breadth-first search tree

Parallel edge

Parallel Edge: edge between two nodes at the same level

Parallel edge

A level k parallel edge=>there is odd cycle of length up to 2k+1

Detect Odd Cycles up to 
Certain Length

Each node should be a root once; complexity: O( |N|×(|N|+|E|) )
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Break Odd Cycles with 
Variable Splitting

RCG

…=A op B

…=A op C

…=B op C

code

A

B

C

…=A op B

A’=A

…=A’ op C

…=B op C

A B

CA’

Inserting MOV can split 
“A” and break the cycle

Cost: one MOV instruction
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In-place Bank Exchange
Require extra registers, which may not be available.

Our approaches:
If no register, try to free one through rematerialization
Last resort: in-place bank exchange

…= RA1 op RA2

…= RB op RA2 

RB  = RA1 ⊕ RB 
RA1= RA1orig ⊕ RBorig;  RB= RA1orig;

RB  = RA1 ⊕ RB 
RA1= RA1orig ⊕ RBorig;  RB= RBorig;

RA1= RA1 ⊕ RB 
RA1= RA1orig;  RB= RBorig;

RA1= RA1 ⊕ RB 
RA1= RA1orig ⊕ RBorig;

RB= RA1orig
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Breaking Odd Cycles

Breaking odd cycles with minimal cost is very expensive 
(NP-complete)

ILP solver—long compilation time

A heuristic solution that gives good results quickly
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Odd Cycle Breaking Algorithm

Build breadth-first 
search tree, put all 

odd cycles with length 
K to Cycle_set

Cycle_set is emptyK+2<=max #nodes
Y

N

N

Y

K=K+2

K=1,
store all

splitting patterns to
Pattern_set

Find a pattern which 
breaks m cycles with 

cost w and m/w is 
maximal

finish

Inner-loop: break all 
odd-cycle with length K 

heuristically

Outer-loop: break 
all odd-cycles from 

short to long
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Bank Imbalance

RCG

odd cycle breaking

RCG (bipartite graph)

group A group B

Make |group A| = |group B|
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Near-Balancing
GOAL:  roughly balance the two groups, zero cost !
The graph is likely to be disconnected after cycle breaking. 
Each connected component must be bipartite !

RCG (bipartite graph) group A group Bgroup A group B

Connected 
Component 1

Connected 
Component 2
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Solving the Balancing Problem

Solving:
For small m  => exhaustive search  O(2m)

For large  m  => an approximate algorithm for “subset sum”

Suppose the RCG contains m connected components

The complexity of a naïve but optimal solution is O(2m), since 
each connected component could be “flipped” or “not flipped”

Next, fully balance the two banks with a heuristic algorithm
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Application of Algebraic Laws

calculate  a+b+c

t =a+b
..=t +c

t =a+c
..=t +b

t =b+c
..=t +a

a b

t c

a b

t c

a b

t c
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Compilation Flowchart

Our Register Allocator

IXP Assembler and Linker

IXP Assembly Code

Machine Code
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Comparison for Number of Spills 
(Memory Accesses)

70% reduction
Completely avoid spills for 5 benchmarks
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Speedup

Average speedup: 20% purely through compiler optimizations
Compilation time within a few seconds on a Pentium 4 machine

%
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Contributions

Tackled several hard problems with good, fast solutions

Achieved 20% speedup through compiler optimizations

First compiler solution to overcome the dual bank constraint

Published in PACT-03. This work was later integrated into 
Intel’s new compiler
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Lightweight Context Switch
thread 2

X=6

Read Y

W=X-Y

…

thread 1

A=1

B=4

Read C

D=A+B

…

A=1 X=6

B=4

Read C

D=A+B

Read Y

Read C

Read Y
ctx

ctx

Context switch only happens for long latency instructions, 
highly frequent – every 20 cycles

Thread execution is non-preemptive, predictable; threads are 
simultaneously active

1 cycle context switch: only PC is saved
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Register Sharing

with lightweight context switch

Thread 
1

Thread 
2

Thread 
3

Thread 
4

with traditional context switch

Thread 
1

Thread 
2

Thread 
3

Thread 
4

Register File

Our approach

Thread 
1

Thread 
2

Thread 
3

Thread 
4

Thread 
1

Thread 
2

Thread 
3

Thread 
4

sharedprivate
Our approach
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What to Put in Shared Registers ?

Variables in shared registers must not be used
across context switches. Upon context switch,
they should already be dead i.e. unused.

Categorize variables into two types: those used
across context switches, and those are not;

Allocate them separately.
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Non-Switch Region (NSR)--Commbench

read tmp1[buf], 1
sum+=tmp1&0xFFFF
buf=buf+2
if!(sum&0x80000000) 

br BB5

sum=(sum&0xFFFF)
+(sum>>16)

len-=2
ctx_switch
goto BB2

If (len<2) br BB6

sum=0

ctx_switch
If!(len) goto BB8

read tmp2[buf],1
sum+=tmp2&0xFFFF

If!(sum>>16)br BB10

sum=(sum&0xFFFF)
+(sum>>16)

goto BB8

return ~sum

BB1

BB2

BB3 BB6

BB7

BB4

BB5

BB8

BB9

BB10



35

Non-Switch Region (NSR)--Commbench

read tmp1[buf], 1
sum+=tmp1&0xFFFF
buf=buf+2
if!(sum&0x80000000) 

br BB5

sum=(sum&0xFFFF)
+(sum>>16)

len-=2
ctx_switch
goto BB2

If (len<2) br BB6

sum=0

ctx_switch
If!(len) goto BB8

read tmp2[buf],1
sum+=tmp2&0xFFFF

If!(sum>>16)br BB10

sum=(sum&0xFFFF)
+(sum>>16)

goto BB8

return ~sum

BB1

BB2

BB3 BB6

BB7

BB4

BB5

BB8

BB9
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Non-Switch Region (NSR)--Commbench

read tmp1[buf], 1

sum+=tmp1&0xFFFF
buf=buf+2
if!(sum&0x80000000) 

br BB5

sum=(sum&0xFFFF)
+(sum>>16)

len-=2

ctx_switch

If (len<2) br BB6

sum=0

ctx_switch

If!(len) goto BB8

read tmp2[buf],1

If!(sum>>16)br BB10

sum=(sum&0xFFFF)
+(sum>>16)

goto BB8

return ~sum

BB1

BB2

BB3 BB6

BB7

BB4

BB5

BB8

BB9

BB10

sum+=tmp2&0xFFFF

goto BB2
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Non-Switch Region (NSR)--Commbench

read tmp1[buf], 1

sum+=tmp1&0xFFFF
buf=buf+2
if!(sum&0x80000000) 
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sum=(sum&0xFFFF)
+(sum>>16)

len-=2

ctx_switch
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Non-Switch Region (NSR)--Commbench

read tmp1[buf], 1

sum+=tmp1&0xFFFF
buf=buf+2
if!(sum&0x80000000) 

br BB5

sum=(sum&0xFFFF)
+(sum>>16)

len-=2

ctx_switch

goto BB2

If (len<2) br BB6

sum=0

ctx_switch

If!(len) goto BB8

read tmp2[buf],1

sum+=tmp2&0xFFFF

If!(sum>>16)br BB10

sum=(sum&0xFFFF)
+(sum>>16)

goto BB8

return ~sum

BB1

BB2

BB3 BB6

BB7

BB4

BB5
BB8

BB9

BB10

NSR2

NSR1

NSR3

Each Connected Component Form a NSR
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Variable Classification

read tmp1[buf], 1

sum+=tmp1&0xFFFF
buf=buf+2
if!(sum&0x80000000) 

br BB5

sum=(sum&0xFFFF)
+(sum>>16)

len-=2

ctx_switch

goto BB2

If (len<2) br BB6

sum=0

ctx_switch

If!(len) goto BB8

read tmp2[buf],1

sum+=tmp2&0xFFFF

If!(sum>>16)br BB10

sum=(sum&0xFFFF)
+(sum>>16)

goto BB8

return ~sum

BB1

BB2

BB3 BB6

BB7

BB4

BB5
BB8

BB9

BB10

buf
len
sum
tmp1
tmp2
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Inter-thread Register Management

(*) holds ?

1 2( , ... ) (*)
thdi N reg

i
PR Max SR SR SR N+ ≤∑

Reduce 
PR1 by 

1 if 
possible 

Let all PR=MaxPR and all SR=MaxSR

Reduce 
PR2 by 

1 if 
possible 

Reduce 
Max(SR1,SR2…)  

by 1 if possible 

commit the one that 
incurs min total cost 

Intra-thd RA Intra-thd RA Intra-thd RA

Finish
Y

NNN
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Four threads with identical code
24% saving on the number of registers needed

0

50

100

150

200

250

300

Crc Drr
Fir2

dim Frag Kmp
L2

l3_
Rec

L2
l3_

Sen
d

Lz
w

Md5
Wrap

s_
Rec

Wrap
s_

Sen
d

benchmarks

re
g 

nu
m

be
r

baseline (no sharing) ours (with sharing)

Register Pressure Reduction



42

128 physical registers
Speedup up to 29%
Average 20%

Speedup

%
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Contributions

Partially sharing registers among threads alleviates 
registers shortage

Combined with intra-thread allocation, it gives us around 
40% speedup

Published in PLDI-04, later integrated into Intel’s new 
compiler

Our recent work on IPDPS-06 adds hardware modifications 
to achieve more sharing
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Motivation

CPU cycle wastage (20-30%) due to unnecessary stalls

Need for better CPU sharing, some threads take more CPU 
due to less long latency instructions

Real-time scheduling, packet scheduling
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Example — Weighted Round Robin

Inst 1.1
Inst 1.2
Inst 1.3
Inst 1.4
Inst 1.5
Inst 1.6
…

Inst 2.1
Inst 2.2
Inst 2.3
Inst 2.4
Inst 2.5
Inst 2.6
…

thread 1 thread 2

weight=2 weight=3

Inst 2.1
Inst 2.2
Inst 2.3
ctx
Inst 2.4
Inst 2.5
Inst 2.6
ctx
…

Inst 1.1
Inst 1.2
ctx
Inst 1.3
Inst 1.4
ctx
Inst 1.5
Inst 1.6
ctx

thread 1 thread 2

weight=2 weight=3

1.1 1.2 ctx 2.1 2.2 2.3 ctx 1.3 1.4 ctx 2.4 2.5 2.6
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Main Results
Category Constraint Approach

(Weighted) Round Robin—(W)RR FCS
Priority Sharing—PS FCS
Rate Monotonic—RM FCS
Earliest Deadline First—EDF DCS
Priority Class—PC FCS
First Come First Serve—FCFS DCS
(Weighted)Fair Queueing—(W)FQ FCS

CPU Scheduling

Real-time Scheduling

Packet Scheduling

Up to 2% slowdown
Code growth <5%
Eliminate unnecessary stalls, 20-30% improvement on CPU 
utilization
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Other Compiler Work

Parallelize load/store instructions [PACT-02] journal version 
[ACM TECS]

Auto addressing mode [LCTES-03]

Manage hidden registers on ARM [LCTES-04]

Lower power prefetching [LCTES-04], journal version [ACM 
TECS]
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Other Compiler Work

Differential encoding and register allocation [PLDI-05], journal 
version [ACM TOPLAS]

Compiler scheduling of mobile code in a distributed data 
intensive environment [ICDCS-03]

Profile-driven optimizations for server applications [PLDI-06]

Current project at IBM Research: speculative parallelization for
Blue Gene/Q and Power 7
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Optimization for Security

Prevent information leakage through the address bus for 
secure processors [ASPLOS-04] [CASES-04 Best Paper]

Address bus information leakage is a severe problem
Propose two solutions to remedy it

Reduce security overhead, improve security strength 
through compiler/hardware approaches [CGO-06]

Apply to secret sharing [CGO-05] 
Apply to anomaly detection [MICRO-06] [CASES-05]
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Some Other Work

A highly scalable priority queue [IEEE INFOCOM-06]

Reduce cache pollution via prefetch filtering [ICPP-03], 
journal revision [IEEE TOC]

Low latency broadcasting in massive parallel computers 
[IPDPS-02], journal version [IEEE TPDS]
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Multicore

Program partitioning, speculative parallelization

Aggressive speculation with multiple parameterized 
compilation versions

On-chip memory organization and data layout optimizations

Compiler scheduling for power and temperature management

The number of cores will double every 18 months, with
256-core systems commonplace by 2011

—Anant Agarwal, MIT
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Specialization

Applications in special domains: multimedia, scientific 
computing, simulation, physics, chemistry, bio-informatics

Specially designed hardware 
Heterogeneous multicore

Hybrid optimization according to runtime conditions
Compiler generates rough optimization strategies
Runtime system fills in the details
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Security

Automatic patch generation for large-scale zero-day worms
Record forensic data w/ hardware support
Compiler analysis for worm code and system source code
Generate the patch automatically

Compiler/architectural approaches for fast identification of 
malicious inputs



57

That’s All  Folks !

Questions & Answers


