
1

Compiler Optimizations For Highly
Constrained Multithreaded

Multicore Processors

IBM T.J. Watson Research Center

Xiaotong Zhuang

2

Agenda
Overview of My Research
Processor Model
Dual-bank Register Allocation
Inter-thread Register Sharing
Thread Management
Other Work
Future Plan

3

Overview of Research

Goal:
1. Improve performance
2. Satisfy constraints

Optimizing compiler

(with architecture co-design)

Constraints:
architectural design, power,

security, reliability

4

Topics

Compiler Optimizations
PLDI-06, PLDI-04, PACT-03, PACT-02,
LCTES-06, LCTES-03, ACM TECSx2,

ICDCS-03

PLDI-05, ACM TOPLAS, LCTES-04,
ACM TECS, LCTES-04, IPDPS-06

INFOCOM-06, IPDPS-02,
IEEE TPDS, IEEE TOC, ICPP-03

Compiler Optimizations for
Security, Secure Architecture

Compiler Optimizations +
Architectural Support

ASPLOS-04, MICRO-06,
CASES-04 Best Paper, CGO-06,

CGO-05, CASES-05

Others

5

Domain specific multicore processors
For special applications
Specialized, simplified hardware
Complexity pushed to the compiler
Thread level parallelism

Examples
CELL—1 PPE+8 SPUs
Intel’s 80 core teraflop processor
Cradle CT3616—16 DSPs+8 GPPs
ClearSpeed CSX600—96 cores
Intel IXP

Motivation

6

Agenda
Overview of My Research
Processor Model
Dual-bank Register Allocation
Inter-thread Register Sharing
Thread Management
Other Work
Future Plan

7

The IXP Processor Model

core

SRAM SDRAM

core

core core

core core

ARM
core

8

Packet Processing Core

CPU

MMU

code
store

Thread 1
Thread 2

Thread n

register
bank A

register
bank B

No OS, hardware
manages threads

ALU instructions can
finish in 1 cycle

No cache, long memory
latency (30~400 cycles)

Two banks of registers

Fast context switch

9

Compiler Challenges

Code must be highly efficient (1Gb/s => 400 cycle/packet)

Architectural constraint—register usage

Resource constraint—not enough registers
Large register file is slow and expensive
Memory latency is long
Functions are often inlined
Threads simultaneously activeÆcannot shared registers

Service constraint—no OS available

10

Agenda
Overview of My Research
Processor Model
Dual-bank Register Allocation
Inter-thread Register Sharing
Thread Management
Other Work
Future Plan

11

Register Allocation Preliminaries

GOAL: put variables to registers for faster access

Several variables could be put in the same register if they
are active in different places

Some variables might be put in memory (SPILL) when
registers are used up

OUTPUT: for each variable, which register or memory
location it should be allocated to

12

Dual-bank Register Constraint

Dual-bank Constraint
Only for ALU instructions
Two source operands must come from different banks
Fetching operands in parallel allows 1 cycle latency for
all ALU instructions

c = a + b

a bbank A, bank B

a bbank B, bank A
OR

13

Two Issues with Dual-bank
Register Assignment

a Bank A
b Bank B
c Bank B
d Bank B

a=a+b

c=a+c

d=b+c

a Bank A
b Bank B
c ?

Example 1

b=a+b

c=a+c

d=a+d

Example 2

Intel’s assembly tool leaves these problems to the user !!

14

Register Conflict Graph (RCG)

Register Conflict Graph (RCG)

Each variable is a node on the graph

If two variables appear as SOURCE OPERANDS in at least
one ALU instruction, they are connected with a CONFLICT
EDGE

The two end nodes of a conflict edge
should be in different banks

15

Register Conflict Graph (RCG)—
Examples

a=a+b

c=a+c

d=b+c

Example 1

b=a+b

c=a+c

d=a+d

Example 2

A

B

C

RCG

A

B

C

D

RCG

16

No-Conflict Law

RCG is conflictless

No-Conflict Law:

A

B

C

D

A

B

C

Example 1

Example 2

No odd-length cyclesRCG is bipartite

Bank A

Bank B
A

B

C
Bank A

Bank B

ConflictConflict

group A group B

Bank A Bank B

iff iff

17

A root

B C 1st level

E D 2nd level

A

B

C D

E

RCG breadth-first search tree

Parallel edge

Parallel Edge: edge between two nodes at the same level

Parallel edge

A level k parallel edge=>there is odd cycle of length up to 2k+1

Detect Odd Cycles up to
Certain Length

Each node should be a root once; complexity: O(|N|×(|N|+|E|))

18

Break Odd Cycles with
Variable Splitting

RCG

…=A op B

…=A op C

…=B op C

code

A

B

C

…=A op B

A’=A

…=A’ op C

…=B op C

A B

CA’

Inserting MOV can split
“A” and break the cycle

Cost: one MOV instruction

19

In-place Bank Exchange
Require extra registers, which may not be available.

Our approaches:
If no register, try to free one through rematerialization
Last resort: in-place bank exchange

…= RA1 op RA2

…= RB op RA2

RB = RA1 ⊕ RB
RA1= RA1orig ⊕ RBorig; RB= RA1orig;

RB = RA1 ⊕ RB
RA1= RA1orig ⊕ RBorig; RB= RBorig;

RA1= RA1 ⊕ RB
RA1= RA1orig; RB= RBorig;

RA1= RA1 ⊕ RB
RA1= RA1orig ⊕ RBorig;

RB= RA1orig

20

Breaking Odd Cycles

Breaking odd cycles with minimal cost is very expensive
(NP-complete)

ILP solver—long compilation time

A heuristic solution that gives good results quickly

21

Odd Cycle Breaking Algorithm

Build breadth-first
search tree, put all

odd cycles with length
K to Cycle_set

Cycle_set is emptyK+2<=max #nodes
Y

N

N

Y

K=K+2

K=1,
store all

splitting patterns to
Pattern_set

Find a pattern which
breaks m cycles with

cost w and m/w is
maximal

finish

Inner-loop: break all
odd-cycle with length K

heuristically

Outer-loop: break
all odd-cycles from

short to long

22

Bank Imbalance

RCG

odd cycle breaking

RCG (bipartite graph)

group A group B

Make |group A| = |group B|

23

Near-Balancing
GOAL: roughly balance the two groups, zero cost !
The graph is likely to be disconnected after cycle breaking.
Each connected component must be bipartite !

RCG (bipartite graph) group A group Bgroup A group B

Connected
Component 1

Connected
Component 2

24

Solving the Balancing Problem

Solving:
For small m => exhaustive search O(2m)

For large m => an approximate algorithm for “subset sum”

Suppose the RCG contains m connected components

The complexity of a naïve but optimal solution is O(2m), since
each connected component could be “flipped” or “not flipped”

Next, fully balance the two banks with a heuristic algorithm

25

Application of Algebraic Laws

calculate a+b+c

t =a+b
..=t +c

t =a+c
..=t +b

t =b+c
..=t +a

a b

t c

a b

t c

a b

t c

26

Compilation Flowchart

Our Register Allocator

IXP Assembler and Linker

IXP Assembly Code

Machine Code

27

Comparison for Number of Spills
(Memory Accesses)

70% reduction
Completely avoid spills for 5 benchmarks

0
10
20
30
40
50
60
70
80

Drr

Fir2
dim Frag

Kmp

Lz
w

Md5
Wrap

s (
rec

eiv
e)

Wrap
s (

se
nd

)
Baseline Dual Bank

28

Speedup

Average speedup: 20% purely through compiler optimizations
Compilation time within a few seconds on a Pentium 4 machine

%

0

5

10

15

20

25

30

Drr

Fir2
dim Frag

Kmp

Lz
w

Md5
Wrap

s (
rec

eiv
e)

Wrap
s (

se
nd

)

29

Contributions

Tackled several hard problems with good, fast solutions

Achieved 20% speedup through compiler optimizations

First compiler solution to overcome the dual bank constraint

Published in PACT-03. This work was later integrated into
Intel’s new compiler

30

Agenda
Overview of My Research
Processor Model
Dual-bank Register Allocation
Inter-thread Register Sharing
Thread Management
Other Work
Future Plan

31

Lightweight Context Switch
thread 2

X=6

Read Y

W=X-Y

…

thread 1

A=1

B=4

Read C

D=A+B

…

A=1 X=6

B=4

Read C

D=A+B

Read Y

Read C

Read Y
ctx

ctx

Context switch only happens for long latency instructions,
highly frequent – every 20 cycles

Thread execution is non-preemptive, predictable; threads are
simultaneously active

1 cycle context switch: only PC is saved

32

Register Sharing

with lightweight context switch

Thread
1

Thread
2

Thread
3

Thread
4

with traditional context switch

Thread
1

Thread
2

Thread
3

Thread
4

Register File

Our approach

Thread
1

Thread
2

Thread
3

Thread
4

Thread
1

Thread
2

Thread
3

Thread
4

sharedprivate
Our approach

33

What to Put in Shared Registers ?

Variables in shared registers must not be used
across context switches. Upon context switch,
they should already be dead i.e. unused.

Categorize variables into two types: those used
across context switches, and those are not;

Allocate them separately.

34

Non-Switch Region (NSR)--Commbench

read tmp1[buf], 1
sum+=tmp1&0xFFFF
buf=buf+2
if!(sum&0x80000000)

br BB5

sum=(sum&0xFFFF)
+(sum>>16)

len-=2
ctx_switch
goto BB2

If (len<2) br BB6

sum=0

ctx_switch
If!(len) goto BB8

read tmp2[buf],1
sum+=tmp2&0xFFFF

If!(sum>>16)br BB10

sum=(sum&0xFFFF)
+(sum>>16)

goto BB8

return ~sum

BB1

BB2

BB3 BB6

BB7

BB4

BB5

BB8

BB9

BB10

35

Non-Switch Region (NSR)--Commbench

read tmp1[buf], 1
sum+=tmp1&0xFFFF
buf=buf+2
if!(sum&0x80000000)

br BB5

sum=(sum&0xFFFF)
+(sum>>16)

len-=2
ctx_switch
goto BB2

If (len<2) br BB6

sum=0

ctx_switch
If!(len) goto BB8

read tmp2[buf],1
sum+=tmp2&0xFFFF

If!(sum>>16)br BB10

sum=(sum&0xFFFF)
+(sum>>16)

goto BB8

return ~sum

BB1

BB2

BB3 BB6

BB7

BB4

BB5

BB8

BB9

BB10

36

Non-Switch Region (NSR)--Commbench

read tmp1[buf], 1

sum+=tmp1&0xFFFF
buf=buf+2
if!(sum&0x80000000)

br BB5

sum=(sum&0xFFFF)
+(sum>>16)

len-=2

ctx_switch

If (len<2) br BB6

sum=0

ctx_switch

If!(len) goto BB8

read tmp2[buf],1

If!(sum>>16)br BB10

sum=(sum&0xFFFF)
+(sum>>16)

goto BB8

return ~sum

BB1

BB2

BB3 BB6

BB7

BB4

BB5

BB8

BB9

BB10

sum+=tmp2&0xFFFF

goto BB2

37

Non-Switch Region (NSR)--Commbench

read tmp1[buf], 1

sum+=tmp1&0xFFFF
buf=buf+2
if!(sum&0x80000000)

br BB5

sum=(sum&0xFFFF)
+(sum>>16)

len-=2

ctx_switch

goto BB2

If (len<2) br BB6

sum=0

ctx_switch

If!(len) goto BB8

read tmp2[buf],1

sum+=tmp2&0xFFFF

If!(sum>>16)br BB10

sum=(sum&0xFFFF)
+(sum>>16)

goto BB8

return ~sum

BB1

BB2

BB3 BB6

BB7

BB4

BB5
BB8

BB9

BB10

38

Non-Switch Region (NSR)--Commbench

read tmp1[buf], 1

sum+=tmp1&0xFFFF
buf=buf+2
if!(sum&0x80000000)

br BB5

sum=(sum&0xFFFF)
+(sum>>16)

len-=2

ctx_switch

goto BB2

If (len<2) br BB6

sum=0

ctx_switch

If!(len) goto BB8

read tmp2[buf],1

sum+=tmp2&0xFFFF

If!(sum>>16)br BB10

sum=(sum&0xFFFF)
+(sum>>16)

goto BB8

return ~sum

BB1

BB2

BB3 BB6

BB7

BB4

BB5
BB8

BB9

BB10

NSR2

NSR1

NSR3

Each Connected Component Form a NSR

39

Variable Classification

read tmp1[buf], 1

sum+=tmp1&0xFFFF
buf=buf+2
if!(sum&0x80000000)

br BB5

sum=(sum&0xFFFF)
+(sum>>16)

len-=2

ctx_switch

goto BB2

If (len<2) br BB6

sum=0

ctx_switch

If!(len) goto BB8

read tmp2[buf],1

sum+=tmp2&0xFFFF

If!(sum>>16)br BB10

sum=(sum&0xFFFF)
+(sum>>16)

goto BB8

return ~sum

BB1

BB2

BB3 BB6

BB7

BB4

BB5
BB8

BB9

BB10

buf
len
sum
tmp1
tmp2

40

Inter-thread Register Management

(*) holds ?

1 2(, ...) (*)
thdi N reg

i
PR Max SR SR SR N+ ≤∑

Reduce
PR1 by

1 if
possible

Let all PR=MaxPR and all SR=MaxSR

Reduce
PR2 by

1 if
possible

Reduce
Max(SR1,SR2…)

by 1 if possible

commit the one that
incurs min total cost

Intra-thd RA Intra-thd RA Intra-thd RA

Finish
Y

NNN

41

Four threads with identical code
24% saving on the number of registers needed

0

50

100

150

200

250

300

Crc Drr
Fir2

dim Frag Kmp
L2

l3_
Rec

L2
l3_

Sen
d

Lz
w

Md5
Wrap

s_
Rec

Wrap
s_

Sen
d

benchmarks

re
g

nu
m

be
r

baseline (no sharing) ours (with sharing)

Register Pressure Reduction

42

128 physical registers
Speedup up to 29%
Average 20%

Speedup

%

0

5

10

15

20

25

30

35

Crc Drr
Fir

2d
im Fra

g

Kmp
L2

l3_
Rec

L2
l3_

Sen
d

Lz
w

Md5
Wrap

s_
Rec

Wrap
s_

Sen
d

benchmarks

43

Contributions

Partially sharing registers among threads alleviates
registers shortage

Combined with intra-thread allocation, it gives us around
40% speedup

Published in PLDI-04, later integrated into Intel’s new
compiler

Our recent work on IPDPS-06 adds hardware modifications
to achieve more sharing

44

Agenda
Overview of My Research
Processor Model
Dual-bank Register Allocation
Inter-thread Register Sharing
Thread Management
Other Work
Future Plan

45

Motivation

CPU cycle wastage (20-30%) due to unnecessary stalls

Need for better CPU sharing, some threads take more CPU
due to less long latency instructions

Real-time scheduling, packet scheduling

46

Example — Weighted Round Robin

Inst 1.1
Inst 1.2
Inst 1.3
Inst 1.4
Inst 1.5
Inst 1.6
…

Inst 2.1
Inst 2.2
Inst 2.3
Inst 2.4
Inst 2.5
Inst 2.6
…

thread 1 thread 2

weight=2 weight=3

Inst 2.1
Inst 2.2
Inst 2.3
ctx
Inst 2.4
Inst 2.5
Inst 2.6
ctx
…

Inst 1.1
Inst 1.2
ctx
Inst 1.3
Inst 1.4
ctx
Inst 1.5
Inst 1.6
ctx

thread 1 thread 2

weight=2 weight=3

1.1 1.2 ctx 2.1 2.2 2.3 ctx 1.3 1.4 ctx 2.4 2.5 2.6

47

Main Results
Category Constraint Approach

(Weighted) Round Robin—(W)RR FCS
Priority Sharing—PS FCS
Rate Monotonic—RM FCS
Earliest Deadline First—EDF DCS
Priority Class—PC FCS
First Come First Serve—FCFS DCS
(Weighted)Fair Queueing—(W)FQ FCS

CPU Scheduling

Real-time Scheduling

Packet Scheduling

Up to 2% slowdown
Code growth <5%
Eliminate unnecessary stalls, 20-30% improvement on CPU
utilization

48

Agenda
Overview of My Research
Processor Model
Dual-bank Register Allocation
Inter-thread Register Sharing
Thread Management
Other Work
Future Plan

49

Other Compiler Work

Parallelize load/store instructions [PACT-02] journal version
[ACM TECS]

Auto addressing mode [LCTES-03]

Manage hidden registers on ARM [LCTES-04]

Lower power prefetching [LCTES-04], journal version [ACM
TECS]

50

Other Compiler Work

Differential encoding and register allocation [PLDI-05], journal
version [ACM TOPLAS]

Compiler scheduling of mobile code in a distributed data
intensive environment [ICDCS-03]

Profile-driven optimizations for server applications [PLDI-06]

Current project at IBM Research: speculative parallelization for
Blue Gene/Q and Power 7

51

Optimization for Security

Prevent information leakage through the address bus for
secure processors [ASPLOS-04] [CASES-04 Best Paper]

Address bus information leakage is a severe problem
Propose two solutions to remedy it

Reduce security overhead, improve security strength
through compiler/hardware approaches [CGO-06]

Apply to secret sharing [CGO-05]
Apply to anomaly detection [MICRO-06] [CASES-05]

52

Some Other Work

A highly scalable priority queue [IEEE INFOCOM-06]

Reduce cache pollution via prefetch filtering [ICPP-03],
journal revision [IEEE TOC]

Low latency broadcasting in massive parallel computers
[IPDPS-02], journal version [IEEE TPDS]

53

Agenda
Overview of My Research
Processor Model
Dual-bank Register Allocation
Inter-thread Register Sharing
Thread Management
Other Work
Future Plan

54

Multicore

Program partitioning, speculative parallelization

Aggressive speculation with multiple parameterized
compilation versions

On-chip memory organization and data layout optimizations

Compiler scheduling for power and temperature management

The number of cores will double every 18 months, with
256-core systems commonplace by 2011

—Anant Agarwal, MIT

55

Specialization

Applications in special domains: multimedia, scientific
computing, simulation, physics, chemistry, bio-informatics

Specially designed hardware
Heterogeneous multicore

Hybrid optimization according to runtime conditions
Compiler generates rough optimization strategies
Runtime system fills in the details

56

Security

Automatic patch generation for large-scale zero-day worms
Record forensic data w/ hardware support
Compiler analysis for worm code and system source code
Generate the patch automatically

Compiler/architectural approaches for fast identification of
malicious inputs

57

That’s All Folks !

Questions & Answers

