
Information Extraction from
Real-time Applications at Run Time

Sebastian Fischmeister
University of Waterloo

esg.uwaterloo.ca

1

Outline

• Setting the stage
• Motivate the need for information extraction
• Time-aware instrumentation
• Time-triggered runtime verification
• Conclusions

2

SETTING THE STAGE:
REAL-TIME SAFETY-CRITICAL
EMBEDDED SOFTWARE

3

Embedded Systems Everywhere
4

Embedded Software Everywhere
5

System Lines of Code
Darlington Shutdown System 40 000

Mars Science Laboratory 4 000 000
Boeing 787 6 500 000
Current luxury car 100 000 000

Safety-critical Real-time Systems
6

Physics doesn’t wait for you.
The right value too late still causes errors.

THE NEED FOR
INFORMATION EXTRACTION

• Software is getting big
• We can’t comprehend it
• Bugs are real

7

Software is Getting Big
8

1

10

100

1000

10000

100000

1000000

10000000
Code size

Software is Getting Big
9

0
1000000
2000000
3000000
4000000
5000000
6000000
7000000

F-22 Raptor
(1997)

F-35 Joint Strike
Fighter (2006)

Boeing 787 (2009)

Code size

• GM car in 1981: 50 000 LOC
• GM car in 2011: 100 000 000 LOC
• Next generation car: 300 000 000 LOC

We Cannot Comprehend Software

• Software is where the innovation is happening!
Features sell, apps everywhere

• Software size and
complexity is the
challenge!

10

Illustrating one root cause:
Bridge from Tokyo

to Vancouver

12

10
 0

00
 d

ot
s

100K?
10M?

http://www.vendian.org/envelope/dir2/lots_of_dots/million_dots.html

~100M Pixels
13

Co
ur

te
sy

 o
f B

ob
 M

al
la

rd
.

Bugs are Real

• 80% of the developer time is debugging
• 30-50% of the total cost is integration testing

and debugging

15

Information Extraction

• Information extraction helps the developer
understand the program’s behavior at run time:
– Testing, debugging, tuning, monitoring, validating,

certifying

• Goals: Easy, low cost, readily available, deployable,
and shouldn’t break anything.

• Problem: Existing approaches mostly consider
logical correctness only, but what about other
properties? (e.g., timing)

16

Vision & Path

Time aware
instrumentation

Coverage
 criterion [RTAS’09, TII]

ISA extension
 [tech rep]

Time-triggered
runtime verification

Crit. CFG &
 sampling [FM’11]

Mem vs. sampl.
 tradeoff [RV’11]

Time-triggered
execution monitoring

 Markers
[LCTES’10]

 bitvec+
[LCTES’11]

Observability
In software

 Super-loop
[LCTES’11]

 Preemptive
[OPODIS’11]

Information
extraction
framework

 for real-time
safety-critical
applications

17

TIME-AWARE INSTRUMENTATION

Fischmeister, S., and P. Lam, "Time-Aware Instrumentation of Embedded
Software", IEEE Transactions on Industrial Informatics, vol. P, issue 99, pp.
1551–3203, August, 2010
Fischmeister, S., and P. Lam, "On Time-Aware Instrumentation of
Programs", Proc. of the 15th IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS), San Francisco, USA, pp. 305--314,
2009.

18

Problem

Current instrumentation methods
preserve only logical correctness.

Can we capture runtime
execution behavior (=variable
assignments) with no or little
timing interference?

19

Execution Time Profile
N

um
be

r o
f o

bs
er

va
tio

ns

Execution time 0

WCET Deadline

20

Idea in a Nutshell
Fr

eq
ue

nc
y

Execution time

Original

Instrumented
Deadline

21

Right shift!

Challenges

• Can we actually create this right shift?
• What will we do, if there is insufficient slack?
• What does the optimal solution look like?

22

Capturing on non-WCET Paths

X

X X

Basic block

WCET path

Ignore assignment
On WCET path

23

Idea in a Nutshell
Fr

eq
ue

nc
y

Execution time

Original
Instrumented

Deadline What if it doesn’t fit?

24

Concept of coverage

Coverage

• Coverage of an insertion point: p of the last
branching point

• Coverage of a path: miss ratio of assignments to
logged assignments on the path

• Coverage of an instrumentation: miss ratio of on
all paths

Optimality: For a given time budget, what
placement of log statements yields the best
coverage? [RTAS’09, TII]

25

Standard Toolchain
26

Function
selection

Source
analysis

Naïve
instrumentation Compilation

Execution

Time-aware Instrumenation Toolchain
27

Function
selection

Source
analysis

Execution

Instrument
(time aware)

Compilation

Timing
analysis

Adjust
coverage Prototypes for:

• ARM9
• ATMEL

Case Study: OLPC Keyboard Controller

• Test feasibility
• Test hypothesis that

shift in execution time
occurs

• Experiment with time
budgets

28

handle_power()

• Approach works, but effects are limited without
extra time budget.

25% of the paths share
basic blocks with the
WCET path.

29

Fr
eq

ue
nc

y

Increasing the Time Budget
Co

ve
ra

ge

Increase in Coverage with additional Time Budget

• Small increase in the time budget has huge effects.
Additional budget for instrumentation

30

Case Study: Embedded FS
31

Fr
eq

ue
nc

y

Case Study: Embedded FS
32

Fr
eq

ue
nc

y

Ongoing Work on TAI

• What makes a program instrumentable?

• Can we transform a program to be more suitable
for (time-aware) instrumentation?

• What other properties than time are of interest?
(arbitrary non-functional properties)

33

Summary (TAI)

• Instrumentation can be time aware.
• The “right shift” idea works and is technically

feasible.
• Long-term vision:

– New methods with better coverage
– New methods for other properties
– Software & hardware hybrid solutions

36

TIME-TRIGGERED RUNTIME
VERIFICATION

Bonakdarpour, B., S. Navabpour, and S. Fischmeister, "Sampling-based
Runtime Verification", Proc. of the International Symposium on Formal
Methods (FM), Limerick, Ireland, June, 2011.
Navabpour, S., C. W. W. Wu, B. Bonakdarpour, and S. Fischmeister,
"Efficient Techniques for Near-optimal Instrumentation in Time-triggered
Runtime Verification", Proc. of the 2nd International Conference on
Runtime Verification (RV), San Francisco, USA, September, 2011.

37

Runtime Verification

• Observing program to check compliance with
some specification.
– Online, offline (traces)

• Example uses:

– Runtime validation and safety
– System steering
– Performance monitoring and tuning
– Debugging

38

Application

An Online External RV System

Program

Observer

Monitor

Recovery & steering

Report

Observe

Eval.
properties

39

Problem

Current approaches are event-
triggered and can lead to transient
overloads at run time.

Can we observe the program with
predictable overhead?

40

Event-based Runtime Verification

We instrument lines 5

and 6 such that the
monitor is invoked.

‘b’ and ‘c’ of interest

ET has Problems (Overhead)

Time

Overhead

Spikes in overhead are a
problem in real-time
embedded systems

Idea in a Nutshell

• Our idea is to bound the overhead of runtime

verification and make it predictable
(=> engineerable).

• We analyze the correctness of the system in a
time-triggered fashion:
– At the end of each period, the monitor is invoked to

take a sample from the system to analyze its
soundness.

Objective

execution

overhead

T T T

Bounded and predictable

overhead

TTRV Problem 1

Identify the sampling
period, such that the
monitor observes all
changes vital to evaluating
the correctness of a given
property.

45

Our Approach

C
Program

Control Flow Graph

Sampling
Frequency

Property

Generating CFG

Basic Block

weight
=

best case execution time

A
1,2

B
4..7

C
9

D
10

2 2

1 4

Calculating Sampling Period (1)

Critical Basic Block

A
1,2

B
4..7

C
9

D
10

2 2

1 4

Each critical basic block

contains only one
critical instruction

Calculating Sampling Period (2)

Each critical basic block

contains only one
critical instruction

A

1,2

B
4..7

C
9

D
10

2 2

1 4

A
1,2

B
5

C
9

2

2

1

1

B
6

D
10

B
4

B
7

1

1

1

Calculating Sampling Period (3)

A
1,2

B
5

C
9

2

2

1

1

B
6

D
10

B
4

B
7

1

1

1

A

D

3

3

2

B1

B2

1

Minimum Sampling Period

The minimum sampling period for a
property is the minimum arc weight that
originates from a corresponding critical
basic block.

Computing the Sampling Period

Sampling Period = 1

A

D

3

3

2

B1

B2

1

TTRV Problem 2

The basic sampling period can
be very small. Can we increase
the sampling period?

Use history information to
increase the minimal sampling
period.

53

Calculating Sampling Period

1 4

SP = 1

Minimum sampling period is a conservative estimate
and often results in sampling with high frequency and
over-sampling in some execution branches.

The Problem in Detail

Solution: Leveraging Histories

1 4

SP = 1

5

SP = 5

Optimization Problem

Instance. A weighted digraph G = <V, A, w> and positive integers X and Y.

Decision problem. Does there exist a set U of vertices, such that by collapsing all
vertices in U, we obtain a weighted digraph G = <V’, A’, w’>, where |U| ≤ Y
and for all arcs (u, v) in A’, w’(u, v) ≥ X?

Size of History

Sampling period

Mapping to ILP

• Variables
– x for collapsing vertices
– a for arc weights
– y as choice variables to simplify the encoding

• Constraints

– All arc weights must be greater than the sampling period
– Updates on arc weights when collapsing vertices
– Loops with critical vertices must not be collapsed

Prototype Tool Chain

C
Program

CFG

Instrumentation

Instructions

Property

CIL

lp_solve

ILP Model

Sampling
period

Experimental Setting (from MiBench)

• Blowfish: 745 lines of code. Results in a CFG of 169 vertices

and 213 arcs. We take 20 variables for monitoring.

• Dijkstra: 171 lines of code. Results in a CFG of 65 vertices and

78 arcs. We take 8 variables for monitoring.

• 3 experiments
– Event-triggered monitoring
– Sampling-based monitoring without history
– Sampling-based monitoring with history

• All experiments are conducted on a Mac Book Pro with

2.26GHz Intel Core 2 Duo and 2GB main memory.

Experimental Results (Blowfish – 50x)

Burstiness

Overhead spikes

Predictable pattern of

overhead

Experimental Results
(Blowfish – 100x)

Longer sampling period

results in less overall
overhead (faster

execution)

Experimental Results (Dijkstra – 50x)

Experimental Results (Dijkstra – 100x)

5x faster execution

Cumulative Overhead

Cumulative Overhead

Experimental Results (Dijkstra – Memory)

Experimental Results (Blowfish – Memory)

TTRV Problem 3

Optimal use of a history buffer is NP-
complete with the size of the CFG.

Can we find a near-optimal solution in
reasonable time?

68

Short Answer: Yes
69

Short Answer: Yes
70

Summary (TTRV)

• A time-triggered approach is a feasible approach
for runtime verification

• Surprising result that TTRV can even lead to
better overall performance

• Lot of open problems:
– Multicore? Integration of the monitor? Fair

distribution of instrumentation? Adaptive and
dynamic TTRV? Hybrid ET&TTRV? Concurrent
applications?

Conclusions

• Embedded software is everywhere and increasing in
complexity and size.

• Many development activities require comprehending the
system, and we thus need information extraction.

• Current tool only support preserving logical correctness. The
presented work provides a glimpse of what can be possible.

• While other disciplines have a thorough understanding of
the probe effect, software engineering considers only logical
correctness.

• Understanding how to extract information from programs
at run time is a widely unexplored area.
(=> software probe effect beyond logical correctness)

Acknowledgements

This research was mostly supported by the
Canadian tax payer.

 Thank you!

73

Questions?

(PS: Postdoc and grad student positions available,
just talk to me afterwards or email me
sfischme@uwaterloo.ca)

mailto:sfischme@uwaterloo.ca

	Information Extraction from �Real-time Applications at Run Time
	Outline
	Setting the Stage:�Real-time Safety-critical Embedded Software
	Embedded Systems Everywhere
	Embedded Software Everywhere
	Safety-critical Real-time Systems
	The Need for �Information Extraction
	Software is Getting Big
	Software is Getting Big
	We Cannot Comprehend Software
	Slide Number 12
	~100M Pixels
	Bugs are Real
	Information Extraction
	Vision & Path
	Time-aware Instrumentation
	Problem
	Execution Time Profile
	Idea in a Nutshell
	Challenges
	Capturing on non-WCET Paths
	Idea in a Nutshell
	Coverage
	Standard Toolchain
	Time-aware Instrumenation Toolchain
	Case Study: OLPC Keyboard Controller
	handle_power()
	Increasing the Time Budget
	Case Study: Embedded FS
	Case Study: Embedded FS
	Ongoing Work on TAI
	Summary (TAI)
	Time-triggered Runtime Verification
	Runtime Verification
	An Online External RV System
	Problem
	Event-based Runtime Verification
	ET has Problems (Overhead)
	Idea in a Nutshell
	Objective
	TTRV Problem 1
	Our Approach
	Generating CFG
	Calculating Sampling Period (1)
	Calculating Sampling Period (2)
	Calculating Sampling Period (3)
	Minimum Sampling Period
	Computing the Sampling Period
	TTRV Problem 2
	Calculating Sampling Period
	Solution: Leveraging Histories
	Optimization Problem
	Mapping to ILP
	Prototype Tool Chain
	Experimental Setting (from MiBench)
	Experimental Results (Blowfish – 50x)
	Experimental Results�(Blowfish – 100x)
	Experimental Results (Dijkstra – 50x)
	Experimental Results (Dijkstra – 100x)
	Cumulative Overhead
	Cumulative Overhead
	Experimental Results (Dijkstra – Memory)
	Experimental Results (Blowfish – Memory)
	TTRV Problem 3
	Short Answer: Yes
	Short Answer: Yes
	Summary (TTRV)
	Conclusions
	Acknowledgements
	Slide Number 74

